Loading…
Genome-wide identification of PME genes, evolution and expression analyses in soybean (Glycine max L.)
Pectin methylesterase (PME) is one of pectin-modifying enzyme that affects the pectin homeostasis in cell wall and regulates plant growth and diverse biological processes. The PME genes have been well explored and characterized in different plants. Nevertheless, systematic research on the soybean (G...
Saved in:
Published in: | BMC plant biology 2021-12, Vol.21 (1), p.578-578, Article 578 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pectin methylesterase (PME) is one of pectin-modifying enzyme that affects the pectin homeostasis in cell wall and regulates plant growth and diverse biological processes. The PME genes have been well explored and characterized in different plants. Nevertheless, systematic research on the soybean (Glycine max L.) PME genes remain lacking.
We identified 127 Glycine max PME genes (GmPME) from the soybean Wm82.a2.v1 genome, which unevenly distributed on 20 soybean chromosomes. Phylogenetic analysis classified the GmPME genes into four clades (Group I, Group II, Group III and Group IV). GmPME gene members in the same clades displayed similar gene structures and motif patterns. The gene family expansion analysis demonstrated that segmental duplication was the major driving force to acquire novel GmPME genes compared to the tandem duplication events. Further synteny and evolution analyses showed that the GmPME gene family experienced strong purifying selective pressures during evolution. The cis-element analyses together with the expression patterns of the GmPME genes in various tissues suggested that the GmPME genes broadly participate in distinct biological processes and regulate soybean developments. Importantly, based on the transcriptome data and quantitative RT-PCR validations, we examined the potential roles of the GmPME genes in regulating soybean flower bud development and seed germination.
In conclusion, we provided a comprehensive characterization of the PME genes in soybean, and our work laid a foundation for the functional study of GmPME genes in the future. |
---|---|
ISSN: | 1471-2229 1471-2229 |
DOI: | 10.1186/s12870-021-03355-1 |