Loading…

Maximizing Utilization and Minimizing Migration in Thermal-Aware Energy-Efficient Real-Time Multiprocessor Scheduling

This work proposes CAlECs, a clustered scheduling system for MPSoCs subject to thermal and energy constraints. It calculates off-line a cyclic executive honoring temporal and thermal constraints, for a hard real-time (HRT) task set at minimum frequency to reduce consumed energy, minimizing context s...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2021, Vol.9, p.83309-83328
Main Authors: Rubio-Anguiano, Laura Elena, Trabanco, Abel Chils, Velasco, Jose Luis Briz, Ramirez-Trevino, Antonio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-c9ebac56550363f4930b3d05a62c542854ecccfc29864df98452510a66f629cf3
cites cdi_FETCH-LOGICAL-c408t-c9ebac56550363f4930b3d05a62c542854ecccfc29864df98452510a66f629cf3
container_end_page 83328
container_issue
container_start_page 83309
container_title IEEE access
container_volume 9
creator Rubio-Anguiano, Laura Elena
Trabanco, Abel Chils
Velasco, Jose Luis Briz
Ramirez-Trevino, Antonio
description This work proposes CAlECs, a clustered scheduling system for MPSoCs subject to thermal and energy constraints. It calculates off-line a cyclic executive honoring temporal and thermal constraints, for a hard real-time (HRT) task set at minimum frequency to reduce consumed energy, minimizing context switches and migrations. It also provides an on-line controller able to manage system and task parametric variations and soft real-time (SRT) tasks, always meeting the HRT task set constraints and the system thermal bound. CAlECS maximizes CPU utilization to help avoid overprovisioning contributing to a low SWaP factor. Its modular design allows the utilization of different modeling and scheduling approaches, and makes the off-line and on-line components independent from each other to better suit the requirements of a specific system. We experimentally show that the cyclic executive provided by CAlECS for HRT task sets outperforms RUN, a reference off-line algorithm in terms of optimal number of context switches.
doi_str_mv 10.1109/ACCESS.2021.3086698
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_26e7b3a3d3244a04bd3de22b01b83981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9447037</ieee_id><doaj_id>oai_doaj_org_article_26e7b3a3d3244a04bd3de22b01b83981</doaj_id><sourcerecordid>2541466717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-c9ebac56550363f4930b3d05a62c542854ecccfc29864df98452510a66f629cf3</originalsourceid><addsrcrecordid>eNpNUU1r20AQFSWFhtS_wBdBz3L2W7tHY9w0YFOo7fOyWs3aY2QpXUmkya_PukpD5zLDvHlvZnhZNqdkQSkx98vVar3bLRhhdMGJVsroT9kto8oUXHJ181_9JZv1_Zmk0Kkly9ts3Lo_eMFXbI_5YcAGX92AXZu7ts632P6DtniME4Btvj9BvLimWD67CPm6hXh8KdYhoEdoh_wXJGyPF8i3YzPgU-w89H0X850_QT02Se9r9jm4pofZe77LDt_X-9WPYvPz4XG13BReED0U3kDlvFRSEq54EIaTitdEOsW8FExLAd774JnRStTBaCGZpMQpFRQzPvC77HHSrTt3tk8RLy6-2M6h_dvo4tG6OKBvwDIFZcUdrzkTwhFR1bwGxipCK82Npknr26SVHvo9Qj_YczfGNp1vmRRUKFXSMk3xacrHru8jhI-tlNirXXayy17tsu92JdZ8YiEAfDCMECXhJX8DVYqRoA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541466717</pqid></control><display><type>article</type><title>Maximizing Utilization and Minimizing Migration in Thermal-Aware Energy-Efficient Real-Time Multiprocessor Scheduling</title><source>IEEE Open Access Journals</source><creator>Rubio-Anguiano, Laura Elena ; Trabanco, Abel Chils ; Velasco, Jose Luis Briz ; Ramirez-Trevino, Antonio</creator><creatorcontrib>Rubio-Anguiano, Laura Elena ; Trabanco, Abel Chils ; Velasco, Jose Luis Briz ; Ramirez-Trevino, Antonio</creatorcontrib><description>This work proposes CAlECs, a clustered scheduling system for MPSoCs subject to thermal and energy constraints. It calculates off-line a cyclic executive honoring temporal and thermal constraints, for a hard real-time (HRT) task set at minimum frequency to reduce consumed energy, minimizing context switches and migrations. It also provides an on-line controller able to manage system and task parametric variations and soft real-time (SRT) tasks, always meeting the HRT task set constraints and the system thermal bound. CAlECS maximizes CPU utilization to help avoid overprovisioning contributing to a low SWaP factor. Its modular design allows the utilization of different modeling and scheduling approaches, and makes the off-line and on-line components independent from each other to better suit the requirements of a specific system. We experimentally show that the cyclic executive provided by CAlECS for HRT task sets outperforms RUN, a reference off-line algorithm in terms of optimal number of context switches.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3086698</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; clustering algorithms ; Context ; control ; Design factors ; Job shop scheduling ; Modular design ; Multiprocessing ; multiprocessors ; Optimization ; Partitioning algorithms ; Petri nets ; Processor scheduling ; Real time ; Real-time systems ; Schedules ; Scheduling ; Switches ; Task analysis ; Utilization</subject><ispartof>IEEE access, 2021, Vol.9, p.83309-83328</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-c9ebac56550363f4930b3d05a62c542854ecccfc29864df98452510a66f629cf3</citedby><cites>FETCH-LOGICAL-c408t-c9ebac56550363f4930b3d05a62c542854ecccfc29864df98452510a66f629cf3</cites><orcidid>0000-0003-4175-8873 ; 0000-0001-5940-9837 ; 0000-0002-6418-078X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9447037$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Rubio-Anguiano, Laura Elena</creatorcontrib><creatorcontrib>Trabanco, Abel Chils</creatorcontrib><creatorcontrib>Velasco, Jose Luis Briz</creatorcontrib><creatorcontrib>Ramirez-Trevino, Antonio</creatorcontrib><title>Maximizing Utilization and Minimizing Migration in Thermal-Aware Energy-Efficient Real-Time Multiprocessor Scheduling</title><title>IEEE access</title><addtitle>Access</addtitle><description>This work proposes CAlECs, a clustered scheduling system for MPSoCs subject to thermal and energy constraints. It calculates off-line a cyclic executive honoring temporal and thermal constraints, for a hard real-time (HRT) task set at minimum frequency to reduce consumed energy, minimizing context switches and migrations. It also provides an on-line controller able to manage system and task parametric variations and soft real-time (SRT) tasks, always meeting the HRT task set constraints and the system thermal bound. CAlECS maximizes CPU utilization to help avoid overprovisioning contributing to a low SWaP factor. Its modular design allows the utilization of different modeling and scheduling approaches, and makes the off-line and on-line components independent from each other to better suit the requirements of a specific system. We experimentally show that the cyclic executive provided by CAlECS for HRT task sets outperforms RUN, a reference off-line algorithm in terms of optimal number of context switches.</description><subject>Algorithms</subject><subject>clustering algorithms</subject><subject>Context</subject><subject>control</subject><subject>Design factors</subject><subject>Job shop scheduling</subject><subject>Modular design</subject><subject>Multiprocessing</subject><subject>multiprocessors</subject><subject>Optimization</subject><subject>Partitioning algorithms</subject><subject>Petri nets</subject><subject>Processor scheduling</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>Switches</subject><subject>Task analysis</subject><subject>Utilization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r20AQFSWFhtS_wBdBz3L2W7tHY9w0YFOo7fOyWs3aY2QpXUmkya_PukpD5zLDvHlvZnhZNqdkQSkx98vVar3bLRhhdMGJVsroT9kto8oUXHJ181_9JZv1_Zmk0Kkly9ts3Lo_eMFXbI_5YcAGX92AXZu7ts632P6DtniME4Btvj9BvLimWD67CPm6hXh8KdYhoEdoh_wXJGyPF8i3YzPgU-w89H0X850_QT02Se9r9jm4pofZe77LDt_X-9WPYvPz4XG13BReED0U3kDlvFRSEq54EIaTitdEOsW8FExLAd774JnRStTBaCGZpMQpFRQzPvC77HHSrTt3tk8RLy6-2M6h_dvo4tG6OKBvwDIFZcUdrzkTwhFR1bwGxipCK82Npknr26SVHvo9Qj_YczfGNp1vmRRUKFXSMk3xacrHru8jhI-tlNirXXayy17tsu92JdZ8YiEAfDCMECXhJX8DVYqRoA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Rubio-Anguiano, Laura Elena</creator><creator>Trabanco, Abel Chils</creator><creator>Velasco, Jose Luis Briz</creator><creator>Ramirez-Trevino, Antonio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4175-8873</orcidid><orcidid>https://orcid.org/0000-0001-5940-9837</orcidid><orcidid>https://orcid.org/0000-0002-6418-078X</orcidid></search><sort><creationdate>2021</creationdate><title>Maximizing Utilization and Minimizing Migration in Thermal-Aware Energy-Efficient Real-Time Multiprocessor Scheduling</title><author>Rubio-Anguiano, Laura Elena ; Trabanco, Abel Chils ; Velasco, Jose Luis Briz ; Ramirez-Trevino, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-c9ebac56550363f4930b3d05a62c542854ecccfc29864df98452510a66f629cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>clustering algorithms</topic><topic>Context</topic><topic>control</topic><topic>Design factors</topic><topic>Job shop scheduling</topic><topic>Modular design</topic><topic>Multiprocessing</topic><topic>multiprocessors</topic><topic>Optimization</topic><topic>Partitioning algorithms</topic><topic>Petri nets</topic><topic>Processor scheduling</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>Switches</topic><topic>Task analysis</topic><topic>Utilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rubio-Anguiano, Laura Elena</creatorcontrib><creatorcontrib>Trabanco, Abel Chils</creatorcontrib><creatorcontrib>Velasco, Jose Luis Briz</creatorcontrib><creatorcontrib>Ramirez-Trevino, Antonio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rubio-Anguiano, Laura Elena</au><au>Trabanco, Abel Chils</au><au>Velasco, Jose Luis Briz</au><au>Ramirez-Trevino, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximizing Utilization and Minimizing Migration in Thermal-Aware Energy-Efficient Real-Time Multiprocessor Scheduling</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>83309</spage><epage>83328</epage><pages>83309-83328</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This work proposes CAlECs, a clustered scheduling system for MPSoCs subject to thermal and energy constraints. It calculates off-line a cyclic executive honoring temporal and thermal constraints, for a hard real-time (HRT) task set at minimum frequency to reduce consumed energy, minimizing context switches and migrations. It also provides an on-line controller able to manage system and task parametric variations and soft real-time (SRT) tasks, always meeting the HRT task set constraints and the system thermal bound. CAlECS maximizes CPU utilization to help avoid overprovisioning contributing to a low SWaP factor. Its modular design allows the utilization of different modeling and scheduling approaches, and makes the off-line and on-line components independent from each other to better suit the requirements of a specific system. We experimentally show that the cyclic executive provided by CAlECS for HRT task sets outperforms RUN, a reference off-line algorithm in terms of optimal number of context switches.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3086698</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-4175-8873</orcidid><orcidid>https://orcid.org/0000-0001-5940-9837</orcidid><orcidid>https://orcid.org/0000-0002-6418-078X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.83309-83328
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_26e7b3a3d3244a04bd3de22b01b83981
source IEEE Open Access Journals
subjects Algorithms
clustering algorithms
Context
control
Design factors
Job shop scheduling
Modular design
Multiprocessing
multiprocessors
Optimization
Partitioning algorithms
Petri nets
Processor scheduling
Real time
Real-time systems
Schedules
Scheduling
Switches
Task analysis
Utilization
title Maximizing Utilization and Minimizing Migration in Thermal-Aware Energy-Efficient Real-Time Multiprocessor Scheduling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A35%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximizing%20Utilization%20and%20Minimizing%20Migration%20in%20Thermal-Aware%20Energy-Efficient%20Real-Time%20Multiprocessor%20Scheduling&rft.jtitle=IEEE%20access&rft.au=Rubio-Anguiano,%20Laura%20Elena&rft.date=2021&rft.volume=9&rft.spage=83309&rft.epage=83328&rft.pages=83309-83328&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3086698&rft_dat=%3Cproquest_doaj_%3E2541466717%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-c9ebac56550363f4930b3d05a62c542854ecccfc29864df98452510a66f629cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2541466717&rft_id=info:pmid/&rft_ieee_id=9447037&rfr_iscdi=true