Loading…
Novel Mixed-Phase α/γ-Fe2O3 Micro-Flower Assembled with Nanosheets for Enhancing Acetone Detection
Although individual γ-Fe2O3 and α-Fe2O3 have been widely fabricated for gas sensors, their mixed phase of α/γ-Fe2O3 might deliver excellent sensing properties. In this study, a facile solvothermal method was used to fabricate Fe-alkoxide. After thermal treatment, it was converted into γ-Fe2O3, α-Fe2...
Saved in:
Published in: | Crystals (Basel) 2023-05, Vol.13 (5), p.810 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Although individual γ-Fe2O3 and α-Fe2O3 have been widely fabricated for gas sensors, their mixed phase of α/γ-Fe2O3 might deliver excellent sensing properties. In this study, a facile solvothermal method was used to fabricate Fe-alkoxide. After thermal treatment, it was converted into γ-Fe2O3, α-Fe2O3 and their mixed-phase α/γ-Fe2O3 with a nanosheets-assembled flower-like structure. We studied the influence of calcination temperature on the phase and sensing properties on acetone detection. The α/γ-Fe2O3 which annealed at 400 °C included 18% α-Fe2O3 and it exhibited excellent sensing performance towards acetone compared to that of γ-Fe2O3 and α-Fe2O3. It showed a response of 353 to acetone with a concentration of 200 ppm, and a low limit of detection of 0.5 ppm at 160 °C. In addition, the change in responses with acetone concentration from 50 to 200 ppm shows a good linear relationship. Moreover, this material has good reproducibility and selectivity as well as a fast response time of 22 s and recovery time of 14 s to 200 ppm. Therefore, our mixed phase of α/γ-Fe2O3 possesses great prospects for acetone detection. |
---|---|
ISSN: | 2073-4352 2073-4352 |
DOI: | 10.3390/cryst13050810 |