Loading…

A Visual-Inertial Pressure Fusion-Based Underwater Simultaneous Localization and Mapping System

Detecting objects, particularly naval mines, on the seafloor is a complex task. In naval mine countermeasures (MCM) operations, sidescan or synthetic aperture sonars have been used to search large areas. However, a single sensor cannot meet the requirements of high-precision autonomous navigation. B...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2024-05, Vol.24 (10), p.3207
Main Authors: Lu, Zhufei, Xu, Xing, Luo, Yihao, Ding, Lianghui, Zhou, Chao, Wang, Jiarong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c413t-94f385c1b0707ef85debaced6c5313fa66a9e5d0b35c9c5edc70494b062c3a403
container_end_page
container_issue 10
container_start_page 3207
container_title Sensors (Basel, Switzerland)
container_volume 24
creator Lu, Zhufei
Xu, Xing
Luo, Yihao
Ding, Lianghui
Zhou, Chao
Wang, Jiarong
description Detecting objects, particularly naval mines, on the seafloor is a complex task. In naval mine countermeasures (MCM) operations, sidescan or synthetic aperture sonars have been used to search large areas. However, a single sensor cannot meet the requirements of high-precision autonomous navigation. Based on the ORB-SLAM3-VI framework, we propose ORB-SLAM3-VIP, which integrates a depth sensor, an IMU sensor and an optical sensor. This method integrates the measurements of depth sensors and an IMU sensor into the visual SLAM algorithm through tight coupling, and establishes a multi-sensor fusion SLAM model. Depth constraints are introduced into the process of initialization, scale fine-tuning, tracking and mapping to constrain the position of the sensor in the -axis and improve the accuracy of pose estimation and map scale estimate. The test on seven sets of underwater multi-sensor sequence data in the AQUALOC dataset shows that, compared with ORB-SLAM3-VI, the ORB-SLAM3-VIP system proposed in this paper reduces the scale error in all sequences by up to 41.2%, and reduces the trajectory error by up to 41.2%. The square root has also been reduced by up to 41.6%.
doi_str_mv 10.3390/s24103207
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_270631b65c564897b166bb16455a88e1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A795445089</galeid><doaj_id>oai_doaj_org_article_270631b65c564897b166bb16455a88e1</doaj_id><sourcerecordid>A795445089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-94f385c1b0707ef85debaced6c5313fa66a9e5d0b35c9c5edc70494b062c3a403</originalsourceid><addsrcrecordid>eNpdkV-L1DAUxYMo7rr64BeQgi_60DVp_jWP4-LqwIjCur6G2-R2yNA2Y9Ii66c3btdBJHATLr97bg6HkJeMXnJu6LvcCEZ5Q_Ujcs5EI-q2aejjf95n5FnOB0obznn7lJzxVhtBFTsndlN9D3mBod5OmOYAQ_U1Yc5Lwup6ySFO9XvI6KvbyWP6CTOm6iaMyzDDhHHJ1S46GMIvmAtaweSrz3A8hmlf3dzlGcfn5EkPQ8YXD_cFub3-8O3qU7378nF7tdnVTjA-10b0vJWOdVRTjX0rPXbg0CsnOeM9KAUGpacdl844id5pKozoqGocB0H5Bdmuuj7CwR5TGCHd2QjB3jdi2lso9tyAttFUcdYp6aQSrdEdU6orRUgJbYusaL1ZtY4p_lgwz3YM2eEwrJYtp4pyrWVrCvr6P_QQlzQVp4WSRjNeDBXqcqX2UPaHqY9zAleOxzG4OGEfSn-jjRRC0nvZt-uASzHnhP3JEaP2T-T2FHlhXz18YelG9Cfyb8b8N4bopBg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059713070</pqid></control><display><type>article</type><title>A Visual-Inertial Pressure Fusion-Based Underwater Simultaneous Localization and Mapping System</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Lu, Zhufei ; Xu, Xing ; Luo, Yihao ; Ding, Lianghui ; Zhou, Chao ; Wang, Jiarong</creator><creatorcontrib>Lu, Zhufei ; Xu, Xing ; Luo, Yihao ; Ding, Lianghui ; Zhou, Chao ; Wang, Jiarong</creatorcontrib><description>Detecting objects, particularly naval mines, on the seafloor is a complex task. In naval mine countermeasures (MCM) operations, sidescan or synthetic aperture sonars have been used to search large areas. However, a single sensor cannot meet the requirements of high-precision autonomous navigation. Based on the ORB-SLAM3-VI framework, we propose ORB-SLAM3-VIP, which integrates a depth sensor, an IMU sensor and an optical sensor. This method integrates the measurements of depth sensors and an IMU sensor into the visual SLAM algorithm through tight coupling, and establishes a multi-sensor fusion SLAM model. Depth constraints are introduced into the process of initialization, scale fine-tuning, tracking and mapping to constrain the position of the sensor in the -axis and improve the accuracy of pose estimation and map scale estimate. The test on seven sets of underwater multi-sensor sequence data in the AQUALOC dataset shows that, compared with ORB-SLAM3-VI, the ORB-SLAM3-VIP system proposed in this paper reduces the scale error in all sequences by up to 41.2%, and reduces the trajectory error by up to 41.2%. The square root has also been reduced by up to 41.6%.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s24103207</identifier><identifier>PMID: 38794061</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Cameras ; Localization ; Mines, Submarine ; multi-sensor fusion ; Normal distribution ; Optimization ; ORB-SLAM ; Random variables ; Remote submersibles ; Sensors ; Sonar ; Sonar systems ; underwater SLAM</subject><ispartof>Sensors (Basel, Switzerland), 2024-05, Vol.24 (10), p.3207</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c413t-94f385c1b0707ef85debaced6c5313fa66a9e5d0b35c9c5edc70494b062c3a403</cites><orcidid>0000-0001-9072-0201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3059713070/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3059713070?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38794061$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Zhufei</creatorcontrib><creatorcontrib>Xu, Xing</creatorcontrib><creatorcontrib>Luo, Yihao</creatorcontrib><creatorcontrib>Ding, Lianghui</creatorcontrib><creatorcontrib>Zhou, Chao</creatorcontrib><creatorcontrib>Wang, Jiarong</creatorcontrib><title>A Visual-Inertial Pressure Fusion-Based Underwater Simultaneous Localization and Mapping System</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Detecting objects, particularly naval mines, on the seafloor is a complex task. In naval mine countermeasures (MCM) operations, sidescan or synthetic aperture sonars have been used to search large areas. However, a single sensor cannot meet the requirements of high-precision autonomous navigation. Based on the ORB-SLAM3-VI framework, we propose ORB-SLAM3-VIP, which integrates a depth sensor, an IMU sensor and an optical sensor. This method integrates the measurements of depth sensors and an IMU sensor into the visual SLAM algorithm through tight coupling, and establishes a multi-sensor fusion SLAM model. Depth constraints are introduced into the process of initialization, scale fine-tuning, tracking and mapping to constrain the position of the sensor in the -axis and improve the accuracy of pose estimation and map scale estimate. The test on seven sets of underwater multi-sensor sequence data in the AQUALOC dataset shows that, compared with ORB-SLAM3-VI, the ORB-SLAM3-VIP system proposed in this paper reduces the scale error in all sequences by up to 41.2%, and reduces the trajectory error by up to 41.2%. The square root has also been reduced by up to 41.6%.</description><subject>Algorithms</subject><subject>Cameras</subject><subject>Localization</subject><subject>Mines, Submarine</subject><subject>multi-sensor fusion</subject><subject>Normal distribution</subject><subject>Optimization</subject><subject>ORB-SLAM</subject><subject>Random variables</subject><subject>Remote submersibles</subject><subject>Sensors</subject><subject>Sonar</subject><subject>Sonar systems</subject><subject>underwater SLAM</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkV-L1DAUxYMo7rr64BeQgi_60DVp_jWP4-LqwIjCur6G2-R2yNA2Y9Ii66c3btdBJHATLr97bg6HkJeMXnJu6LvcCEZ5Q_Ujcs5EI-q2aejjf95n5FnOB0obznn7lJzxVhtBFTsndlN9D3mBod5OmOYAQ_U1Yc5Lwup6ySFO9XvI6KvbyWP6CTOm6iaMyzDDhHHJ1S46GMIvmAtaweSrz3A8hmlf3dzlGcfn5EkPQ8YXD_cFub3-8O3qU7378nF7tdnVTjA-10b0vJWOdVRTjX0rPXbg0CsnOeM9KAUGpacdl844id5pKozoqGocB0H5Bdmuuj7CwR5TGCHd2QjB3jdi2lso9tyAttFUcdYp6aQSrdEdU6orRUgJbYusaL1ZtY4p_lgwz3YM2eEwrJYtp4pyrWVrCvr6P_QQlzQVp4WSRjNeDBXqcqX2UPaHqY9zAleOxzG4OGEfSn-jjRRC0nvZt-uASzHnhP3JEaP2T-T2FHlhXz18YelG9Cfyb8b8N4bopBg</recordid><startdate>20240518</startdate><enddate>20240518</enddate><creator>Lu, Zhufei</creator><creator>Xu, Xing</creator><creator>Luo, Yihao</creator><creator>Ding, Lianghui</creator><creator>Zhou, Chao</creator><creator>Wang, Jiarong</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9072-0201</orcidid></search><sort><creationdate>20240518</creationdate><title>A Visual-Inertial Pressure Fusion-Based Underwater Simultaneous Localization and Mapping System</title><author>Lu, Zhufei ; Xu, Xing ; Luo, Yihao ; Ding, Lianghui ; Zhou, Chao ; Wang, Jiarong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-94f385c1b0707ef85debaced6c5313fa66a9e5d0b35c9c5edc70494b062c3a403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Cameras</topic><topic>Localization</topic><topic>Mines, Submarine</topic><topic>multi-sensor fusion</topic><topic>Normal distribution</topic><topic>Optimization</topic><topic>ORB-SLAM</topic><topic>Random variables</topic><topic>Remote submersibles</topic><topic>Sensors</topic><topic>Sonar</topic><topic>Sonar systems</topic><topic>underwater SLAM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Zhufei</creatorcontrib><creatorcontrib>Xu, Xing</creatorcontrib><creatorcontrib>Luo, Yihao</creatorcontrib><creatorcontrib>Ding, Lianghui</creatorcontrib><creatorcontrib>Zhou, Chao</creatorcontrib><creatorcontrib>Wang, Jiarong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Zhufei</au><au>Xu, Xing</au><au>Luo, Yihao</au><au>Ding, Lianghui</au><au>Zhou, Chao</au><au>Wang, Jiarong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Visual-Inertial Pressure Fusion-Based Underwater Simultaneous Localization and Mapping System</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2024-05-18</date><risdate>2024</risdate><volume>24</volume><issue>10</issue><spage>3207</spage><pages>3207-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Detecting objects, particularly naval mines, on the seafloor is a complex task. In naval mine countermeasures (MCM) operations, sidescan or synthetic aperture sonars have been used to search large areas. However, a single sensor cannot meet the requirements of high-precision autonomous navigation. Based on the ORB-SLAM3-VI framework, we propose ORB-SLAM3-VIP, which integrates a depth sensor, an IMU sensor and an optical sensor. This method integrates the measurements of depth sensors and an IMU sensor into the visual SLAM algorithm through tight coupling, and establishes a multi-sensor fusion SLAM model. Depth constraints are introduced into the process of initialization, scale fine-tuning, tracking and mapping to constrain the position of the sensor in the -axis and improve the accuracy of pose estimation and map scale estimate. The test on seven sets of underwater multi-sensor sequence data in the AQUALOC dataset shows that, compared with ORB-SLAM3-VI, the ORB-SLAM3-VIP system proposed in this paper reduces the scale error in all sequences by up to 41.2%, and reduces the trajectory error by up to 41.2%. The square root has also been reduced by up to 41.6%.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38794061</pmid><doi>10.3390/s24103207</doi><orcidid>https://orcid.org/0000-0001-9072-0201</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2024-05, Vol.24 (10), p.3207
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_270631b65c564897b166bb16455a88e1
source Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Algorithms
Cameras
Localization
Mines, Submarine
multi-sensor fusion
Normal distribution
Optimization
ORB-SLAM
Random variables
Remote submersibles
Sensors
Sonar
Sonar systems
underwater SLAM
title A Visual-Inertial Pressure Fusion-Based Underwater Simultaneous Localization and Mapping System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A05%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Visual-Inertial%20Pressure%20Fusion-Based%20Underwater%20Simultaneous%20Localization%20and%20Mapping%20System&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Lu,%20Zhufei&rft.date=2024-05-18&rft.volume=24&rft.issue=10&rft.spage=3207&rft.pages=3207-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s24103207&rft_dat=%3Cgale_doaj_%3EA795445089%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c413t-94f385c1b0707ef85debaced6c5313fa66a9e5d0b35c9c5edc70494b062c3a403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3059713070&rft_id=info:pmid/38794061&rft_galeid=A795445089&rfr_iscdi=true