Loading…
A Visual-Inertial Pressure Fusion-Based Underwater Simultaneous Localization and Mapping System
Detecting objects, particularly naval mines, on the seafloor is a complex task. In naval mine countermeasures (MCM) operations, sidescan or synthetic aperture sonars have been used to search large areas. However, a single sensor cannot meet the requirements of high-precision autonomous navigation. B...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2024-05, Vol.24 (10), p.3207 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c413t-94f385c1b0707ef85debaced6c5313fa66a9e5d0b35c9c5edc70494b062c3a403 |
container_end_page | |
container_issue | 10 |
container_start_page | 3207 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 24 |
creator | Lu, Zhufei Xu, Xing Luo, Yihao Ding, Lianghui Zhou, Chao Wang, Jiarong |
description | Detecting objects, particularly naval mines, on the seafloor is a complex task. In naval mine countermeasures (MCM) operations, sidescan or synthetic aperture sonars have been used to search large areas. However, a single sensor cannot meet the requirements of high-precision autonomous navigation. Based on the ORB-SLAM3-VI framework, we propose ORB-SLAM3-VIP, which integrates a depth sensor, an IMU sensor and an optical sensor. This method integrates the measurements of depth sensors and an IMU sensor into the visual SLAM algorithm through tight coupling, and establishes a multi-sensor fusion SLAM model. Depth constraints are introduced into the process of initialization, scale fine-tuning, tracking and mapping to constrain the position of the sensor in the
-axis and improve the accuracy of pose estimation and map scale estimate. The test on seven sets of underwater multi-sensor sequence data in the AQUALOC dataset shows that, compared with ORB-SLAM3-VI, the ORB-SLAM3-VIP system proposed in this paper reduces the scale error in all sequences by up to 41.2%, and reduces the trajectory error by up to 41.2%. The square root has also been reduced by up to 41.6%. |
doi_str_mv | 10.3390/s24103207 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_270631b65c564897b166bb16455a88e1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A795445089</galeid><doaj_id>oai_doaj_org_article_270631b65c564897b166bb16455a88e1</doaj_id><sourcerecordid>A795445089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-94f385c1b0707ef85debaced6c5313fa66a9e5d0b35c9c5edc70494b062c3a403</originalsourceid><addsrcrecordid>eNpdkV-L1DAUxYMo7rr64BeQgi_60DVp_jWP4-LqwIjCur6G2-R2yNA2Y9Ii66c3btdBJHATLr97bg6HkJeMXnJu6LvcCEZ5Q_Ujcs5EI-q2aejjf95n5FnOB0obznn7lJzxVhtBFTsndlN9D3mBod5OmOYAQ_U1Yc5Lwup6ySFO9XvI6KvbyWP6CTOm6iaMyzDDhHHJ1S46GMIvmAtaweSrz3A8hmlf3dzlGcfn5EkPQ8YXD_cFub3-8O3qU7378nF7tdnVTjA-10b0vJWOdVRTjX0rPXbg0CsnOeM9KAUGpacdl844id5pKozoqGocB0H5Bdmuuj7CwR5TGCHd2QjB3jdi2lso9tyAttFUcdYp6aQSrdEdU6orRUgJbYusaL1ZtY4p_lgwz3YM2eEwrJYtp4pyrWVrCvr6P_QQlzQVp4WSRjNeDBXqcqX2UPaHqY9zAleOxzG4OGEfSn-jjRRC0nvZt-uASzHnhP3JEaP2T-T2FHlhXz18YelG9Cfyb8b8N4bopBg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059713070</pqid></control><display><type>article</type><title>A Visual-Inertial Pressure Fusion-Based Underwater Simultaneous Localization and Mapping System</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Lu, Zhufei ; Xu, Xing ; Luo, Yihao ; Ding, Lianghui ; Zhou, Chao ; Wang, Jiarong</creator><creatorcontrib>Lu, Zhufei ; Xu, Xing ; Luo, Yihao ; Ding, Lianghui ; Zhou, Chao ; Wang, Jiarong</creatorcontrib><description>Detecting objects, particularly naval mines, on the seafloor is a complex task. In naval mine countermeasures (MCM) operations, sidescan or synthetic aperture sonars have been used to search large areas. However, a single sensor cannot meet the requirements of high-precision autonomous navigation. Based on the ORB-SLAM3-VI framework, we propose ORB-SLAM3-VIP, which integrates a depth sensor, an IMU sensor and an optical sensor. This method integrates the measurements of depth sensors and an IMU sensor into the visual SLAM algorithm through tight coupling, and establishes a multi-sensor fusion SLAM model. Depth constraints are introduced into the process of initialization, scale fine-tuning, tracking and mapping to constrain the position of the sensor in the
-axis and improve the accuracy of pose estimation and map scale estimate. The test on seven sets of underwater multi-sensor sequence data in the AQUALOC dataset shows that, compared with ORB-SLAM3-VI, the ORB-SLAM3-VIP system proposed in this paper reduces the scale error in all sequences by up to 41.2%, and reduces the trajectory error by up to 41.2%. The square root has also been reduced by up to 41.6%.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s24103207</identifier><identifier>PMID: 38794061</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Cameras ; Localization ; Mines, Submarine ; multi-sensor fusion ; Normal distribution ; Optimization ; ORB-SLAM ; Random variables ; Remote submersibles ; Sensors ; Sonar ; Sonar systems ; underwater SLAM</subject><ispartof>Sensors (Basel, Switzerland), 2024-05, Vol.24 (10), p.3207</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c413t-94f385c1b0707ef85debaced6c5313fa66a9e5d0b35c9c5edc70494b062c3a403</cites><orcidid>0000-0001-9072-0201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3059713070/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3059713070?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38794061$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Zhufei</creatorcontrib><creatorcontrib>Xu, Xing</creatorcontrib><creatorcontrib>Luo, Yihao</creatorcontrib><creatorcontrib>Ding, Lianghui</creatorcontrib><creatorcontrib>Zhou, Chao</creatorcontrib><creatorcontrib>Wang, Jiarong</creatorcontrib><title>A Visual-Inertial Pressure Fusion-Based Underwater Simultaneous Localization and Mapping System</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Detecting objects, particularly naval mines, on the seafloor is a complex task. In naval mine countermeasures (MCM) operations, sidescan or synthetic aperture sonars have been used to search large areas. However, a single sensor cannot meet the requirements of high-precision autonomous navigation. Based on the ORB-SLAM3-VI framework, we propose ORB-SLAM3-VIP, which integrates a depth sensor, an IMU sensor and an optical sensor. This method integrates the measurements of depth sensors and an IMU sensor into the visual SLAM algorithm through tight coupling, and establishes a multi-sensor fusion SLAM model. Depth constraints are introduced into the process of initialization, scale fine-tuning, tracking and mapping to constrain the position of the sensor in the
-axis and improve the accuracy of pose estimation and map scale estimate. The test on seven sets of underwater multi-sensor sequence data in the AQUALOC dataset shows that, compared with ORB-SLAM3-VI, the ORB-SLAM3-VIP system proposed in this paper reduces the scale error in all sequences by up to 41.2%, and reduces the trajectory error by up to 41.2%. The square root has also been reduced by up to 41.6%.</description><subject>Algorithms</subject><subject>Cameras</subject><subject>Localization</subject><subject>Mines, Submarine</subject><subject>multi-sensor fusion</subject><subject>Normal distribution</subject><subject>Optimization</subject><subject>ORB-SLAM</subject><subject>Random variables</subject><subject>Remote submersibles</subject><subject>Sensors</subject><subject>Sonar</subject><subject>Sonar systems</subject><subject>underwater SLAM</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkV-L1DAUxYMo7rr64BeQgi_60DVp_jWP4-LqwIjCur6G2-R2yNA2Y9Ii66c3btdBJHATLr97bg6HkJeMXnJu6LvcCEZ5Q_Ujcs5EI-q2aejjf95n5FnOB0obznn7lJzxVhtBFTsndlN9D3mBod5OmOYAQ_U1Yc5Lwup6ySFO9XvI6KvbyWP6CTOm6iaMyzDDhHHJ1S46GMIvmAtaweSrz3A8hmlf3dzlGcfn5EkPQ8YXD_cFub3-8O3qU7378nF7tdnVTjA-10b0vJWOdVRTjX0rPXbg0CsnOeM9KAUGpacdl844id5pKozoqGocB0H5Bdmuuj7CwR5TGCHd2QjB3jdi2lso9tyAttFUcdYp6aQSrdEdU6orRUgJbYusaL1ZtY4p_lgwz3YM2eEwrJYtp4pyrWVrCvr6P_QQlzQVp4WSRjNeDBXqcqX2UPaHqY9zAleOxzG4OGEfSn-jjRRC0nvZt-uASzHnhP3JEaP2T-T2FHlhXz18YelG9Cfyb8b8N4bopBg</recordid><startdate>20240518</startdate><enddate>20240518</enddate><creator>Lu, Zhufei</creator><creator>Xu, Xing</creator><creator>Luo, Yihao</creator><creator>Ding, Lianghui</creator><creator>Zhou, Chao</creator><creator>Wang, Jiarong</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9072-0201</orcidid></search><sort><creationdate>20240518</creationdate><title>A Visual-Inertial Pressure Fusion-Based Underwater Simultaneous Localization and Mapping System</title><author>Lu, Zhufei ; Xu, Xing ; Luo, Yihao ; Ding, Lianghui ; Zhou, Chao ; Wang, Jiarong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-94f385c1b0707ef85debaced6c5313fa66a9e5d0b35c9c5edc70494b062c3a403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Cameras</topic><topic>Localization</topic><topic>Mines, Submarine</topic><topic>multi-sensor fusion</topic><topic>Normal distribution</topic><topic>Optimization</topic><topic>ORB-SLAM</topic><topic>Random variables</topic><topic>Remote submersibles</topic><topic>Sensors</topic><topic>Sonar</topic><topic>Sonar systems</topic><topic>underwater SLAM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Zhufei</creatorcontrib><creatorcontrib>Xu, Xing</creatorcontrib><creatorcontrib>Luo, Yihao</creatorcontrib><creatorcontrib>Ding, Lianghui</creatorcontrib><creatorcontrib>Zhou, Chao</creatorcontrib><creatorcontrib>Wang, Jiarong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Zhufei</au><au>Xu, Xing</au><au>Luo, Yihao</au><au>Ding, Lianghui</au><au>Zhou, Chao</au><au>Wang, Jiarong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Visual-Inertial Pressure Fusion-Based Underwater Simultaneous Localization and Mapping System</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2024-05-18</date><risdate>2024</risdate><volume>24</volume><issue>10</issue><spage>3207</spage><pages>3207-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Detecting objects, particularly naval mines, on the seafloor is a complex task. In naval mine countermeasures (MCM) operations, sidescan or synthetic aperture sonars have been used to search large areas. However, a single sensor cannot meet the requirements of high-precision autonomous navigation. Based on the ORB-SLAM3-VI framework, we propose ORB-SLAM3-VIP, which integrates a depth sensor, an IMU sensor and an optical sensor. This method integrates the measurements of depth sensors and an IMU sensor into the visual SLAM algorithm through tight coupling, and establishes a multi-sensor fusion SLAM model. Depth constraints are introduced into the process of initialization, scale fine-tuning, tracking and mapping to constrain the position of the sensor in the
-axis and improve the accuracy of pose estimation and map scale estimate. The test on seven sets of underwater multi-sensor sequence data in the AQUALOC dataset shows that, compared with ORB-SLAM3-VI, the ORB-SLAM3-VIP system proposed in this paper reduces the scale error in all sequences by up to 41.2%, and reduces the trajectory error by up to 41.2%. The square root has also been reduced by up to 41.6%.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38794061</pmid><doi>10.3390/s24103207</doi><orcidid>https://orcid.org/0000-0001-9072-0201</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2024-05, Vol.24 (10), p.3207 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_270631b65c564897b166bb16455a88e1 |
source | Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Algorithms Cameras Localization Mines, Submarine multi-sensor fusion Normal distribution Optimization ORB-SLAM Random variables Remote submersibles Sensors Sonar Sonar systems underwater SLAM |
title | A Visual-Inertial Pressure Fusion-Based Underwater Simultaneous Localization and Mapping System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A05%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Visual-Inertial%20Pressure%20Fusion-Based%20Underwater%20Simultaneous%20Localization%20and%20Mapping%20System&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Lu,%20Zhufei&rft.date=2024-05-18&rft.volume=24&rft.issue=10&rft.spage=3207&rft.pages=3207-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s24103207&rft_dat=%3Cgale_doaj_%3EA795445089%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c413t-94f385c1b0707ef85debaced6c5313fa66a9e5d0b35c9c5edc70494b062c3a403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3059713070&rft_id=info:pmid/38794061&rft_galeid=A795445089&rfr_iscdi=true |