Loading…
Discriminative Learning Approach Based on Flexible Mixture Model for Medical Data Categorization and Recognition
In this paper, we propose a novel hybrid discriminative learning approach based on shifted-scaled Dirichlet mixture model (SSDMM) and Support Vector Machines (SVMs) to address some challenging problems of medical data categorization and recognition. The main goal is to capture accurately the intrins...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2021-04, Vol.21 (7), p.2450 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c469t-3fd21826ad7d10d52ce6c67d7d1c6b7c4adcc6c0b0cd7c12c8017b5b1907dbb83 |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-3fd21826ad7d10d52ce6c67d7d1c6b7c4adcc6c0b0cd7c12c8017b5b1907dbb83 |
container_end_page | |
container_issue | 7 |
container_start_page | 2450 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 21 |
creator | Alharithi, Fahd Almulihi, Ahmed Bourouis, Sami Alroobaea, Roobaea Bouguila, Nizar |
description | In this paper, we propose a novel hybrid discriminative learning approach based on shifted-scaled Dirichlet mixture model (SSDMM) and Support Vector Machines (SVMs) to address some challenging problems of medical data categorization and recognition. The main goal is to capture accurately the intrinsic nature of biomedical images by considering the desirable properties of both generative and discriminative models. To achieve this objective, we propose to derive new data-based SVM kernels generated from the developed mixture model SSDMM. The proposed approach includes the following steps: the extraction of robust local descriptors, the learning of the developed mixture model via the expectation-maximization (EM) algorithm, and finally the building of three SVM kernels for data categorization and classification. The potential of the implemented framework is illustrated through two challenging problems that concern the categorization of retinal images into normal or diabetic cases and the recognition of lung diseases in chest X-rays (CXR) images. The obtained results demonstrate the merits of our hybrid approach as compared to other methods. |
doi_str_mv | 10.3390/s21072450 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_271c8adbd5f742b59531674e4b08db2b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_271c8adbd5f742b59531674e4b08db2b</doaj_id><sourcerecordid>2550325994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-3fd21826ad7d10d52ce6c67d7d1c6b7c4adcc6c0b0cd7c12c8017b5b1907dbb83</originalsourceid><addsrcrecordid>eNpdkktvEzEQgFcIRB9w4A8gS1zoIeDH-rEXpJJSqJQKCcHZGj9262hjL_amKvx6HFKiltN47G8-jUfTNK8IfsdYh98XSrCkLcdPmmPS0nahKMVPH5yPmpNS1hhTxph63hzVKqIIxcfNdBGKzWETIszh1qOVhxxDHND5NOUE9gZ9hOIdShFdjv4umNGj63A3b3ONyfkR9Smja--ChRFdwAxoCbMfUg6_q7GWQXTom7dpiGGXv2ie9TAW__I-njY_Lj99X35ZrL5-vlqerxa2Fd28YL2jRFEBTjqCHafWCyvkLrPCSNuCs1ZYbLB10hJqFSbScEM6LJ0xip02V3uvS7DWU_0i5F86QdB_L1IeNOQ52NFrKolV4IzjvWyp4R1nRMjWtwYrZ6iprg9717Q1G--sj3OG8ZH08UsMN3pIt1phJhhmVfD2XpDTz60vs97UsftxhOjTtmjKKVaCcCIq-uY_dJ22OdZRVYpjRnnXtZU621M2p1Ky7w_NEKx3O6EPO1HZ1w-7P5D_loD9AZ-Bsng</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550325994</pqid></control><display><type>article</type><title>Discriminative Learning Approach Based on Flexible Mixture Model for Medical Data Categorization and Recognition</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Coronavirus Research Database</source><creator>Alharithi, Fahd ; Almulihi, Ahmed ; Bourouis, Sami ; Alroobaea, Roobaea ; Bouguila, Nizar</creator><creatorcontrib>Alharithi, Fahd ; Almulihi, Ahmed ; Bourouis, Sami ; Alroobaea, Roobaea ; Bouguila, Nizar</creatorcontrib><description>In this paper, we propose a novel hybrid discriminative learning approach based on shifted-scaled Dirichlet mixture model (SSDMM) and Support Vector Machines (SVMs) to address some challenging problems of medical data categorization and recognition. The main goal is to capture accurately the intrinsic nature of biomedical images by considering the desirable properties of both generative and discriminative models. To achieve this objective, we propose to derive new data-based SVM kernels generated from the developed mixture model SSDMM. The proposed approach includes the following steps: the extraction of robust local descriptors, the learning of the developed mixture model via the expectation-maximization (EM) algorithm, and finally the building of three SVM kernels for data categorization and classification. The potential of the implemented framework is illustrated through two challenging problems that concern the categorization of retinal images into normal or diabetic cases and the recognition of lung diseases in chest X-rays (CXR) images. The obtained results demonstrate the merits of our hybrid approach as compared to other methods.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s21072450</identifier><identifier>PMID: 33918120</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Classification ; data categorization and recognition ; Data mining ; Dirichlet problem ; Discrimination Learning ; Machine learning ; medical image analysis ; Medical imaging ; mixture model ; Retinal images ; shifted-scaled Dirichlet distribution ; Support Vector Machine ; Support vector machines ; SVM kernels</subject><ispartof>Sensors (Basel, Switzerland), 2021-04, Vol.21 (7), p.2450</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-3fd21826ad7d10d52ce6c67d7d1c6b7c4adcc6c0b0cd7c12c8017b5b1907dbb83</citedby><cites>FETCH-LOGICAL-c469t-3fd21826ad7d10d52ce6c67d7d1c6b7c4adcc6c0b0cd7c12c8017b5b1907dbb83</cites><orcidid>0000-0002-6638-7039 ; 0000-0003-1585-2962 ; 0000-0001-7224-7940 ; 0000-0003-2166-8168</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2550325994/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2550325994?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33918120$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alharithi, Fahd</creatorcontrib><creatorcontrib>Almulihi, Ahmed</creatorcontrib><creatorcontrib>Bourouis, Sami</creatorcontrib><creatorcontrib>Alroobaea, Roobaea</creatorcontrib><creatorcontrib>Bouguila, Nizar</creatorcontrib><title>Discriminative Learning Approach Based on Flexible Mixture Model for Medical Data Categorization and Recognition</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>In this paper, we propose a novel hybrid discriminative learning approach based on shifted-scaled Dirichlet mixture model (SSDMM) and Support Vector Machines (SVMs) to address some challenging problems of medical data categorization and recognition. The main goal is to capture accurately the intrinsic nature of biomedical images by considering the desirable properties of both generative and discriminative models. To achieve this objective, we propose to derive new data-based SVM kernels generated from the developed mixture model SSDMM. The proposed approach includes the following steps: the extraction of robust local descriptors, the learning of the developed mixture model via the expectation-maximization (EM) algorithm, and finally the building of three SVM kernels for data categorization and classification. The potential of the implemented framework is illustrated through two challenging problems that concern the categorization of retinal images into normal or diabetic cases and the recognition of lung diseases in chest X-rays (CXR) images. The obtained results demonstrate the merits of our hybrid approach as compared to other methods.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>data categorization and recognition</subject><subject>Data mining</subject><subject>Dirichlet problem</subject><subject>Discrimination Learning</subject><subject>Machine learning</subject><subject>medical image analysis</subject><subject>Medical imaging</subject><subject>mixture model</subject><subject>Retinal images</subject><subject>shifted-scaled Dirichlet distribution</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>SVM kernels</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktvEzEQgFcIRB9w4A8gS1zoIeDH-rEXpJJSqJQKCcHZGj9262hjL_amKvx6HFKiltN47G8-jUfTNK8IfsdYh98XSrCkLcdPmmPS0nahKMVPH5yPmpNS1hhTxph63hzVKqIIxcfNdBGKzWETIszh1qOVhxxDHND5NOUE9gZ9hOIdShFdjv4umNGj63A3b3ONyfkR9Smja--ChRFdwAxoCbMfUg6_q7GWQXTom7dpiGGXv2ie9TAW__I-njY_Lj99X35ZrL5-vlqerxa2Fd28YL2jRFEBTjqCHafWCyvkLrPCSNuCs1ZYbLB10hJqFSbScEM6LJ0xip02V3uvS7DWU_0i5F86QdB_L1IeNOQ52NFrKolV4IzjvWyp4R1nRMjWtwYrZ6iprg9717Q1G--sj3OG8ZH08UsMN3pIt1phJhhmVfD2XpDTz60vs97UsftxhOjTtmjKKVaCcCIq-uY_dJ22OdZRVYpjRnnXtZU621M2p1Ky7w_NEKx3O6EPO1HZ1w-7P5D_loD9AZ-Bsng</recordid><startdate>20210402</startdate><enddate>20210402</enddate><creator>Alharithi, Fahd</creator><creator>Almulihi, Ahmed</creator><creator>Bourouis, Sami</creator><creator>Alroobaea, Roobaea</creator><creator>Bouguila, Nizar</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6638-7039</orcidid><orcidid>https://orcid.org/0000-0003-1585-2962</orcidid><orcidid>https://orcid.org/0000-0001-7224-7940</orcidid><orcidid>https://orcid.org/0000-0003-2166-8168</orcidid></search><sort><creationdate>20210402</creationdate><title>Discriminative Learning Approach Based on Flexible Mixture Model for Medical Data Categorization and Recognition</title><author>Alharithi, Fahd ; Almulihi, Ahmed ; Bourouis, Sami ; Alroobaea, Roobaea ; Bouguila, Nizar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-3fd21826ad7d10d52ce6c67d7d1c6b7c4adcc6c0b0cd7c12c8017b5b1907dbb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>data categorization and recognition</topic><topic>Data mining</topic><topic>Dirichlet problem</topic><topic>Discrimination Learning</topic><topic>Machine learning</topic><topic>medical image analysis</topic><topic>Medical imaging</topic><topic>mixture model</topic><topic>Retinal images</topic><topic>shifted-scaled Dirichlet distribution</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>SVM kernels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alharithi, Fahd</creatorcontrib><creatorcontrib>Almulihi, Ahmed</creatorcontrib><creatorcontrib>Bourouis, Sami</creatorcontrib><creatorcontrib>Alroobaea, Roobaea</creatorcontrib><creatorcontrib>Bouguila, Nizar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJÂ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alharithi, Fahd</au><au>Almulihi, Ahmed</au><au>Bourouis, Sami</au><au>Alroobaea, Roobaea</au><au>Bouguila, Nizar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discriminative Learning Approach Based on Flexible Mixture Model for Medical Data Categorization and Recognition</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2021-04-02</date><risdate>2021</risdate><volume>21</volume><issue>7</issue><spage>2450</spage><pages>2450-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>In this paper, we propose a novel hybrid discriminative learning approach based on shifted-scaled Dirichlet mixture model (SSDMM) and Support Vector Machines (SVMs) to address some challenging problems of medical data categorization and recognition. The main goal is to capture accurately the intrinsic nature of biomedical images by considering the desirable properties of both generative and discriminative models. To achieve this objective, we propose to derive new data-based SVM kernels generated from the developed mixture model SSDMM. The proposed approach includes the following steps: the extraction of robust local descriptors, the learning of the developed mixture model via the expectation-maximization (EM) algorithm, and finally the building of three SVM kernels for data categorization and classification. The potential of the implemented framework is illustrated through two challenging problems that concern the categorization of retinal images into normal or diabetic cases and the recognition of lung diseases in chest X-rays (CXR) images. The obtained results demonstrate the merits of our hybrid approach as compared to other methods.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33918120</pmid><doi>10.3390/s21072450</doi><orcidid>https://orcid.org/0000-0002-6638-7039</orcidid><orcidid>https://orcid.org/0000-0003-1585-2962</orcidid><orcidid>https://orcid.org/0000-0001-7224-7940</orcidid><orcidid>https://orcid.org/0000-0003-2166-8168</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2021-04, Vol.21 (7), p.2450 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_271c8adbd5f742b59531674e4b08db2b |
source | Publicly Available Content Database; PubMed Central; Coronavirus Research Database |
subjects | Algorithms Artificial intelligence Classification data categorization and recognition Data mining Dirichlet problem Discrimination Learning Machine learning medical image analysis Medical imaging mixture model Retinal images shifted-scaled Dirichlet distribution Support Vector Machine Support vector machines SVM kernels |
title | Discriminative Learning Approach Based on Flexible Mixture Model for Medical Data Categorization and Recognition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A25%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discriminative%20Learning%20Approach%20Based%20on%20Flexible%20Mixture%20Model%20for%20Medical%20Data%20Categorization%20and%20Recognition&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Alharithi,%20Fahd&rft.date=2021-04-02&rft.volume=21&rft.issue=7&rft.spage=2450&rft.pages=2450-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s21072450&rft_dat=%3Cproquest_doaj_%3E2550325994%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-3fd21826ad7d10d52ce6c67d7d1c6b7c4adcc6c0b0cd7c12c8017b5b1907dbb83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550325994&rft_id=info:pmid/33918120&rfr_iscdi=true |