Loading…

Antarctic Marine Bacteria as a Source of Anti-Biofilm Molecules to Combat ESKAPE Pathogens

The ESKAPE pathogens, including bacteria such as Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species, pose a global health threat due to their ability to resist antimicrobial drugs and evade the immune system....

Full description

Saved in:
Bibliographic Details
Published in:Antibiotics (Basel) 2023-10, Vol.12 (10), p.1556
Main Authors: Artini, Marco, Papa, Rosanna, Vrenna, Gianluca, Trecca, Marika, Paris, Irene, D’Angelo, Caterina, Tutino, Maria Luisa, Parrilli, Ermenegilda, Selan, Laura
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The ESKAPE pathogens, including bacteria such as Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species, pose a global health threat due to their ability to resist antimicrobial drugs and evade the immune system. These pathogens are responsible for hospital-acquired infections, especially in intensive care units, and contribute to the growing problem of multi-drug resistance. In this study, researchers focused on exploring the potential of Antarctic marine bacteria as a source of anti-biofilm molecules to combat ESKAPE pathogens. Four Antarctic bacterial strains were selected, and their cell-free supernatants were tested against 60 clinical ESKAPE isolates. The results showed that the supernatants did not exhibit antimicrobial activity but effectively prevented biofilm formation and dispersed mature biofilms. This research highlights the promising potential of Antarctic bacteria in producing compounds that can counteract biofilms formed by clinically significant bacterial species. These findings contribute to the development of new strategies for preventing and controlling infections caused by ESKAPE pathogens.
ISSN:2079-6382
2079-6382
DOI:10.3390/antibiotics12101556