Loading…
Probing the clinical and brain structural boundaries of bipolar and major depressive disorder
Bipolar disorder (BD) and major depressive disorder (MDD) have both common and distinct clinical features, that pose both conceptual challenges in terms of their diagnostic boundaries and practical difficulties in optimizing treatment. Multivariate machine learning techniques offer new avenues for e...
Saved in:
Published in: | Translational psychiatry 2021-01, Vol.11 (1), p.48-48, Article 48 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bipolar disorder (BD) and major depressive disorder (MDD) have both common and distinct clinical features, that pose both conceptual challenges in terms of their diagnostic boundaries and practical difficulties in optimizing treatment. Multivariate machine learning techniques offer new avenues for exploring these boundaries based on clinical neuroanatomical features. Brain structural data were obtained at 3 T from a sample of 90 patients with BD, 189 patients with MDD, and 162 healthy individuals. We applied sparse partial least squares discriminant analysis (s-PLS-DA) to identify clinical and brain structural features that may discriminate between the two clinical groups, and heterogeneity through discriminative analysis (HYDRA) to detect patient subgroups with reference to healthy individuals. Two clinical dimensions differentiated BD from MDD (area under the curve: 0.76,
P
|
---|---|
ISSN: | 2158-3188 2158-3188 |
DOI: | 10.1038/s41398-020-01169-7 |