Loading…

A Method to Construct Depth Datum Geodesic Height Model for GNSS Bathymetric Survey

Water depth measurement requires the establishment of one or more tidal stations in the survey area for synchronous water level observation, and finally the water depth is estimated to the depth datum. The non-tidal observation measuring has high efficiency and avoids the water level correction erro...

Full description

Saved in:
Bibliographic Details
Published in:Journal of marine science and engineering 2023-01, Vol.11 (1), p.30
Main Authors: Tian, Chenyang, Guan, Minglei, Cheng, Yaxin, Zhang, Wei, Zhang, Dejin, Yang, Jinfeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c406t-56f8b5cdd19be6989e8c319c85148d6460ab99470ec7060f42c021b9c27634493
cites cdi_FETCH-LOGICAL-c406t-56f8b5cdd19be6989e8c319c85148d6460ab99470ec7060f42c021b9c27634493
container_end_page
container_issue 1
container_start_page 30
container_title Journal of marine science and engineering
container_volume 11
creator Tian, Chenyang
Guan, Minglei
Cheng, Yaxin
Zhang, Wei
Zhang, Dejin
Yang, Jinfeng
description Water depth measurement requires the establishment of one or more tidal stations in the survey area for synchronous water level observation, and finally the water depth is estimated to the depth datum. The non-tidal observation measuring has high efficiency and avoids the water level correction error caused by tidal observation in traditional sounding. Therefore, non-tidal observation measuring has become an effective water depth measurement method in offshore and inland water. However, datum conversion in non-tide operation is mostly based on the polynomial fitting method. The accuracy of this method is influenced by the distribution of datum control points, topographic relief and operation ranges. In this paper, we present a method to construct a depth datum geodesic height model, which can directly obtain a bathymetric database of depth data in a GNSS bathymetric survey. The model incorporates the continuous depth datum and the mean sea level of geodetic height in the same area. Through the numerical simulation of tidal wave motion in regional water, the tidal model is obtained. Based on the grid model, the tidal level is extracted from the tidal model for harmonic analysis, and a continuous depth datum model is established. Mean sea level geodetic height is from the CNES-CLS2015 Average Sea Surface Model. In this paper, the model is confirmed in the South Yellow Sea area. The results show that the accuracy of the depth datum model, and the depth datum geodetic height model meets the accuracy requirements of the datum.
doi_str_mv 10.3390/jmse11010030
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_274a995ac8dd47a3ae5d9e6c646084bf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A751984970</galeid><doaj_id>oai_doaj_org_article_274a995ac8dd47a3ae5d9e6c646084bf</doaj_id><sourcerecordid>A751984970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-56f8b5cdd19be6989e8c319c85148d6460ab99470ec7060f42c021b9c27634493</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIIODGB1jiSmEdO34cS4FSicehcI4ce9OmaupiO0j9ewxFiN3DPjQzO9IWxQWFa8Y03Kz6iJQCBWBwUJyUIOWIMloe_uuPi_MYV5BDlYKCOCnmY_KMaekdSZ5M_CamMNhE7nCbluTOpKEnU_QOY2fJI3aLZSLPeVyT1gcyfZnPya1Jy12PKWTEfAifuDsrjlqzjnj-W0-L94f7t8nj6Ol1OpuMn0aWg0ijSrSqqaxzVDcotNKoLKPaqopy5QQXYBqtuQS0EgS0vLRQ0kbbUgrGuWanxWyv67xZ1dvQ9Sbsam-6-mfhw6I2IXV2jXUpudG6MlY5x6VhBiunUdjvK4o3bda63Gttg_8YMKZ65YewyfYzV8iSUyFYRl3vUQuTRbtN61MwNqfDvrN-g22X92NZUa24lpAJV3uCDT7GgO2fTQr199vq_29jX2tph5g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767241663</pqid></control><display><type>article</type><title>A Method to Construct Depth Datum Geodesic Height Model for GNSS Bathymetric Survey</title><source>Publicly Available Content Database</source><creator>Tian, Chenyang ; Guan, Minglei ; Cheng, Yaxin ; Zhang, Wei ; Zhang, Dejin ; Yang, Jinfeng</creator><creatorcontrib>Tian, Chenyang ; Guan, Minglei ; Cheng, Yaxin ; Zhang, Wei ; Zhang, Dejin ; Yang, Jinfeng</creatorcontrib><description>Water depth measurement requires the establishment of one or more tidal stations in the survey area for synchronous water level observation, and finally the water depth is estimated to the depth datum. The non-tidal observation measuring has high efficiency and avoids the water level correction error caused by tidal observation in traditional sounding. Therefore, non-tidal observation measuring has become an effective water depth measurement method in offshore and inland water. However, datum conversion in non-tide operation is mostly based on the polynomial fitting method. The accuracy of this method is influenced by the distribution of datum control points, topographic relief and operation ranges. In this paper, we present a method to construct a depth datum geodesic height model, which can directly obtain a bathymetric database of depth data in a GNSS bathymetric survey. The model incorporates the continuous depth datum and the mean sea level of geodetic height in the same area. Through the numerical simulation of tidal wave motion in regional water, the tidal model is obtained. Based on the grid model, the tidal level is extracted from the tidal model for harmonic analysis, and a continuous depth datum model is established. Mean sea level geodetic height is from the CNES-CLS2015 Average Sea Surface Model. In this paper, the model is confirmed in the South Yellow Sea area. The results show that the accuracy of the depth datum model, and the depth datum geodetic height model meets the accuracy requirements of the datum.</description><identifier>ISSN: 2077-1312</identifier><identifier>EISSN: 2077-1312</identifier><identifier>DOI: 10.3390/jmse11010030</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Bathymetric surveys ; Bathymetry ; Boundary conditions ; chart datum geodetic height ; Coasts ; Datum (elevation) ; Depth measurement ; Error correction ; Fourier analysis ; Geodetic accuracy ; Harmonic analysis ; Height ; Information management ; Inland waters ; Mathematical models ; Mean sea level ; Measurement ; Measurement methods ; Methods ; Model accuracy ; non-tidal observation measuring ; Numerical analysis ; Offshore ; Polynomials ; Product information ; Sea level ; Sea surface ; Simulation ; Simulation methods ; Surveys ; Tidal models ; Tidal waves ; vertical datum transformation ; Water depth ; Water levels ; Wave motion ; Waves</subject><ispartof>Journal of marine science and engineering, 2023-01, Vol.11 (1), p.30</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-56f8b5cdd19be6989e8c319c85148d6460ab99470ec7060f42c021b9c27634493</citedby><cites>FETCH-LOGICAL-c406t-56f8b5cdd19be6989e8c319c85148d6460ab99470ec7060f42c021b9c27634493</cites><orcidid>0000-0002-8710-1730</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2767241663/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2767241663?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><creatorcontrib>Tian, Chenyang</creatorcontrib><creatorcontrib>Guan, Minglei</creatorcontrib><creatorcontrib>Cheng, Yaxin</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Zhang, Dejin</creatorcontrib><creatorcontrib>Yang, Jinfeng</creatorcontrib><title>A Method to Construct Depth Datum Geodesic Height Model for GNSS Bathymetric Survey</title><title>Journal of marine science and engineering</title><description>Water depth measurement requires the establishment of one or more tidal stations in the survey area for synchronous water level observation, and finally the water depth is estimated to the depth datum. The non-tidal observation measuring has high efficiency and avoids the water level correction error caused by tidal observation in traditional sounding. Therefore, non-tidal observation measuring has become an effective water depth measurement method in offshore and inland water. However, datum conversion in non-tide operation is mostly based on the polynomial fitting method. The accuracy of this method is influenced by the distribution of datum control points, topographic relief and operation ranges. In this paper, we present a method to construct a depth datum geodesic height model, which can directly obtain a bathymetric database of depth data in a GNSS bathymetric survey. The model incorporates the continuous depth datum and the mean sea level of geodetic height in the same area. Through the numerical simulation of tidal wave motion in regional water, the tidal model is obtained. Based on the grid model, the tidal level is extracted from the tidal model for harmonic analysis, and a continuous depth datum model is established. Mean sea level geodetic height is from the CNES-CLS2015 Average Sea Surface Model. In this paper, the model is confirmed in the South Yellow Sea area. The results show that the accuracy of the depth datum model, and the depth datum geodetic height model meets the accuracy requirements of the datum.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Bathymetric surveys</subject><subject>Bathymetry</subject><subject>Boundary conditions</subject><subject>chart datum geodetic height</subject><subject>Coasts</subject><subject>Datum (elevation)</subject><subject>Depth measurement</subject><subject>Error correction</subject><subject>Fourier analysis</subject><subject>Geodetic accuracy</subject><subject>Harmonic analysis</subject><subject>Height</subject><subject>Information management</subject><subject>Inland waters</subject><subject>Mathematical models</subject><subject>Mean sea level</subject><subject>Measurement</subject><subject>Measurement methods</subject><subject>Methods</subject><subject>Model accuracy</subject><subject>non-tidal observation measuring</subject><subject>Numerical analysis</subject><subject>Offshore</subject><subject>Polynomials</subject><subject>Product information</subject><subject>Sea level</subject><subject>Sea surface</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>Surveys</subject><subject>Tidal models</subject><subject>Tidal waves</subject><subject>vertical datum transformation</subject><subject>Water depth</subject><subject>Water levels</subject><subject>Wave motion</subject><subject>Waves</subject><issn>2077-1312</issn><issn>2077-1312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIIODGB1jiSmEdO34cS4FSicehcI4ce9OmaupiO0j9ewxFiN3DPjQzO9IWxQWFa8Y03Kz6iJQCBWBwUJyUIOWIMloe_uuPi_MYV5BDlYKCOCnmY_KMaekdSZ5M_CamMNhE7nCbluTOpKEnU_QOY2fJI3aLZSLPeVyT1gcyfZnPya1Jy12PKWTEfAifuDsrjlqzjnj-W0-L94f7t8nj6Ol1OpuMn0aWg0ijSrSqqaxzVDcotNKoLKPaqopy5QQXYBqtuQS0EgS0vLRQ0kbbUgrGuWanxWyv67xZ1dvQ9Sbsam-6-mfhw6I2IXV2jXUpudG6MlY5x6VhBiunUdjvK4o3bda63Gttg_8YMKZ65YewyfYzV8iSUyFYRl3vUQuTRbtN61MwNqfDvrN-g22X92NZUa24lpAJV3uCDT7GgO2fTQr199vq_29jX2tph5g</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Tian, Chenyang</creator><creator>Guan, Minglei</creator><creator>Cheng, Yaxin</creator><creator>Zhang, Wei</creator><creator>Zhang, Dejin</creator><creator>Yang, Jinfeng</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TN</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8710-1730</orcidid></search><sort><creationdate>20230101</creationdate><title>A Method to Construct Depth Datum Geodesic Height Model for GNSS Bathymetric Survey</title><author>Tian, Chenyang ; Guan, Minglei ; Cheng, Yaxin ; Zhang, Wei ; Zhang, Dejin ; Yang, Jinfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-56f8b5cdd19be6989e8c319c85148d6460ab99470ec7060f42c021b9c27634493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Bathymetric surveys</topic><topic>Bathymetry</topic><topic>Boundary conditions</topic><topic>chart datum geodetic height</topic><topic>Coasts</topic><topic>Datum (elevation)</topic><topic>Depth measurement</topic><topic>Error correction</topic><topic>Fourier analysis</topic><topic>Geodetic accuracy</topic><topic>Harmonic analysis</topic><topic>Height</topic><topic>Information management</topic><topic>Inland waters</topic><topic>Mathematical models</topic><topic>Mean sea level</topic><topic>Measurement</topic><topic>Measurement methods</topic><topic>Methods</topic><topic>Model accuracy</topic><topic>non-tidal observation measuring</topic><topic>Numerical analysis</topic><topic>Offshore</topic><topic>Polynomials</topic><topic>Product information</topic><topic>Sea level</topic><topic>Sea surface</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>Surveys</topic><topic>Tidal models</topic><topic>Tidal waves</topic><topic>vertical datum transformation</topic><topic>Water depth</topic><topic>Water levels</topic><topic>Wave motion</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Chenyang</creatorcontrib><creatorcontrib>Guan, Minglei</creatorcontrib><creatorcontrib>Cheng, Yaxin</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Zhang, Dejin</creatorcontrib><creatorcontrib>Yang, Jinfeng</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of marine science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Chenyang</au><au>Guan, Minglei</au><au>Cheng, Yaxin</au><au>Zhang, Wei</au><au>Zhang, Dejin</au><au>Yang, Jinfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Method to Construct Depth Datum Geodesic Height Model for GNSS Bathymetric Survey</atitle><jtitle>Journal of marine science and engineering</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><issue>1</issue><spage>30</spage><pages>30-</pages><issn>2077-1312</issn><eissn>2077-1312</eissn><abstract>Water depth measurement requires the establishment of one or more tidal stations in the survey area for synchronous water level observation, and finally the water depth is estimated to the depth datum. The non-tidal observation measuring has high efficiency and avoids the water level correction error caused by tidal observation in traditional sounding. Therefore, non-tidal observation measuring has become an effective water depth measurement method in offshore and inland water. However, datum conversion in non-tide operation is mostly based on the polynomial fitting method. The accuracy of this method is influenced by the distribution of datum control points, topographic relief and operation ranges. In this paper, we present a method to construct a depth datum geodesic height model, which can directly obtain a bathymetric database of depth data in a GNSS bathymetric survey. The model incorporates the continuous depth datum and the mean sea level of geodetic height in the same area. Through the numerical simulation of tidal wave motion in regional water, the tidal model is obtained. Based on the grid model, the tidal level is extracted from the tidal model for harmonic analysis, and a continuous depth datum model is established. Mean sea level geodetic height is from the CNES-CLS2015 Average Sea Surface Model. In this paper, the model is confirmed in the South Yellow Sea area. The results show that the accuracy of the depth datum model, and the depth datum geodetic height model meets the accuracy requirements of the datum.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/jmse11010030</doi><orcidid>https://orcid.org/0000-0002-8710-1730</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2077-1312
ispartof Journal of marine science and engineering, 2023-01, Vol.11 (1), p.30
issn 2077-1312
2077-1312
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_274a995ac8dd47a3ae5d9e6c646084bf
source Publicly Available Content Database
subjects Accuracy
Algorithms
Bathymetric surveys
Bathymetry
Boundary conditions
chart datum geodetic height
Coasts
Datum (elevation)
Depth measurement
Error correction
Fourier analysis
Geodetic accuracy
Harmonic analysis
Height
Information management
Inland waters
Mathematical models
Mean sea level
Measurement
Measurement methods
Methods
Model accuracy
non-tidal observation measuring
Numerical analysis
Offshore
Polynomials
Product information
Sea level
Sea surface
Simulation
Simulation methods
Surveys
Tidal models
Tidal waves
vertical datum transformation
Water depth
Water levels
Wave motion
Waves
title A Method to Construct Depth Datum Geodesic Height Model for GNSS Bathymetric Survey
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A52%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Method%20to%20Construct%20Depth%20Datum%20Geodesic%20Height%20Model%20for%20GNSS%20Bathymetric%20Survey&rft.jtitle=Journal%20of%20marine%20science%20and%20engineering&rft.au=Tian,%20Chenyang&rft.date=2023-01-01&rft.volume=11&rft.issue=1&rft.spage=30&rft.pages=30-&rft.issn=2077-1312&rft.eissn=2077-1312&rft_id=info:doi/10.3390/jmse11010030&rft_dat=%3Cgale_doaj_%3EA751984970%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-56f8b5cdd19be6989e8c319c85148d6460ab99470ec7060f42c021b9c27634493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2767241663&rft_id=info:pmid/&rft_galeid=A751984970&rfr_iscdi=true