Loading…
A Method to Construct Depth Datum Geodesic Height Model for GNSS Bathymetric Survey
Water depth measurement requires the establishment of one or more tidal stations in the survey area for synchronous water level observation, and finally the water depth is estimated to the depth datum. The non-tidal observation measuring has high efficiency and avoids the water level correction erro...
Saved in:
Published in: | Journal of marine science and engineering 2023-01, Vol.11 (1), p.30 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c406t-56f8b5cdd19be6989e8c319c85148d6460ab99470ec7060f42c021b9c27634493 |
---|---|
cites | cdi_FETCH-LOGICAL-c406t-56f8b5cdd19be6989e8c319c85148d6460ab99470ec7060f42c021b9c27634493 |
container_end_page | |
container_issue | 1 |
container_start_page | 30 |
container_title | Journal of marine science and engineering |
container_volume | 11 |
creator | Tian, Chenyang Guan, Minglei Cheng, Yaxin Zhang, Wei Zhang, Dejin Yang, Jinfeng |
description | Water depth measurement requires the establishment of one or more tidal stations in the survey area for synchronous water level observation, and finally the water depth is estimated to the depth datum. The non-tidal observation measuring has high efficiency and avoids the water level correction error caused by tidal observation in traditional sounding. Therefore, non-tidal observation measuring has become an effective water depth measurement method in offshore and inland water. However, datum conversion in non-tide operation is mostly based on the polynomial fitting method. The accuracy of this method is influenced by the distribution of datum control points, topographic relief and operation ranges. In this paper, we present a method to construct a depth datum geodesic height model, which can directly obtain a bathymetric database of depth data in a GNSS bathymetric survey. The model incorporates the continuous depth datum and the mean sea level of geodetic height in the same area. Through the numerical simulation of tidal wave motion in regional water, the tidal model is obtained. Based on the grid model, the tidal level is extracted from the tidal model for harmonic analysis, and a continuous depth datum model is established. Mean sea level geodetic height is from the CNES-CLS2015 Average Sea Surface Model. In this paper, the model is confirmed in the South Yellow Sea area. The results show that the accuracy of the depth datum model, and the depth datum geodetic height model meets the accuracy requirements of the datum. |
doi_str_mv | 10.3390/jmse11010030 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_274a995ac8dd47a3ae5d9e6c646084bf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A751984970</galeid><doaj_id>oai_doaj_org_article_274a995ac8dd47a3ae5d9e6c646084bf</doaj_id><sourcerecordid>A751984970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-56f8b5cdd19be6989e8c319c85148d6460ab99470ec7060f42c021b9c27634493</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIIODGB1jiSmEdO34cS4FSicehcI4ce9OmaupiO0j9ewxFiN3DPjQzO9IWxQWFa8Y03Kz6iJQCBWBwUJyUIOWIMloe_uuPi_MYV5BDlYKCOCnmY_KMaekdSZ5M_CamMNhE7nCbluTOpKEnU_QOY2fJI3aLZSLPeVyT1gcyfZnPya1Jy12PKWTEfAifuDsrjlqzjnj-W0-L94f7t8nj6Ol1OpuMn0aWg0ijSrSqqaxzVDcotNKoLKPaqopy5QQXYBqtuQS0EgS0vLRQ0kbbUgrGuWanxWyv67xZ1dvQ9Sbsam-6-mfhw6I2IXV2jXUpudG6MlY5x6VhBiunUdjvK4o3bda63Gttg_8YMKZ65YewyfYzV8iSUyFYRl3vUQuTRbtN61MwNqfDvrN-g22X92NZUa24lpAJV3uCDT7GgO2fTQr199vq_29jX2tph5g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767241663</pqid></control><display><type>article</type><title>A Method to Construct Depth Datum Geodesic Height Model for GNSS Bathymetric Survey</title><source>Publicly Available Content Database</source><creator>Tian, Chenyang ; Guan, Minglei ; Cheng, Yaxin ; Zhang, Wei ; Zhang, Dejin ; Yang, Jinfeng</creator><creatorcontrib>Tian, Chenyang ; Guan, Minglei ; Cheng, Yaxin ; Zhang, Wei ; Zhang, Dejin ; Yang, Jinfeng</creatorcontrib><description>Water depth measurement requires the establishment of one or more tidal stations in the survey area for synchronous water level observation, and finally the water depth is estimated to the depth datum. The non-tidal observation measuring has high efficiency and avoids the water level correction error caused by tidal observation in traditional sounding. Therefore, non-tidal observation measuring has become an effective water depth measurement method in offshore and inland water. However, datum conversion in non-tide operation is mostly based on the polynomial fitting method. The accuracy of this method is influenced by the distribution of datum control points, topographic relief and operation ranges. In this paper, we present a method to construct a depth datum geodesic height model, which can directly obtain a bathymetric database of depth data in a GNSS bathymetric survey. The model incorporates the continuous depth datum and the mean sea level of geodetic height in the same area. Through the numerical simulation of tidal wave motion in regional water, the tidal model is obtained. Based on the grid model, the tidal level is extracted from the tidal model for harmonic analysis, and a continuous depth datum model is established. Mean sea level geodetic height is from the CNES-CLS2015 Average Sea Surface Model. In this paper, the model is confirmed in the South Yellow Sea area. The results show that the accuracy of the depth datum model, and the depth datum geodetic height model meets the accuracy requirements of the datum.</description><identifier>ISSN: 2077-1312</identifier><identifier>EISSN: 2077-1312</identifier><identifier>DOI: 10.3390/jmse11010030</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Bathymetric surveys ; Bathymetry ; Boundary conditions ; chart datum geodetic height ; Coasts ; Datum (elevation) ; Depth measurement ; Error correction ; Fourier analysis ; Geodetic accuracy ; Harmonic analysis ; Height ; Information management ; Inland waters ; Mathematical models ; Mean sea level ; Measurement ; Measurement methods ; Methods ; Model accuracy ; non-tidal observation measuring ; Numerical analysis ; Offshore ; Polynomials ; Product information ; Sea level ; Sea surface ; Simulation ; Simulation methods ; Surveys ; Tidal models ; Tidal waves ; vertical datum transformation ; Water depth ; Water levels ; Wave motion ; Waves</subject><ispartof>Journal of marine science and engineering, 2023-01, Vol.11 (1), p.30</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-56f8b5cdd19be6989e8c319c85148d6460ab99470ec7060f42c021b9c27634493</citedby><cites>FETCH-LOGICAL-c406t-56f8b5cdd19be6989e8c319c85148d6460ab99470ec7060f42c021b9c27634493</cites><orcidid>0000-0002-8710-1730</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2767241663/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2767241663?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><creatorcontrib>Tian, Chenyang</creatorcontrib><creatorcontrib>Guan, Minglei</creatorcontrib><creatorcontrib>Cheng, Yaxin</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Zhang, Dejin</creatorcontrib><creatorcontrib>Yang, Jinfeng</creatorcontrib><title>A Method to Construct Depth Datum Geodesic Height Model for GNSS Bathymetric Survey</title><title>Journal of marine science and engineering</title><description>Water depth measurement requires the establishment of one or more tidal stations in the survey area for synchronous water level observation, and finally the water depth is estimated to the depth datum. The non-tidal observation measuring has high efficiency and avoids the water level correction error caused by tidal observation in traditional sounding. Therefore, non-tidal observation measuring has become an effective water depth measurement method in offshore and inland water. However, datum conversion in non-tide operation is mostly based on the polynomial fitting method. The accuracy of this method is influenced by the distribution of datum control points, topographic relief and operation ranges. In this paper, we present a method to construct a depth datum geodesic height model, which can directly obtain a bathymetric database of depth data in a GNSS bathymetric survey. The model incorporates the continuous depth datum and the mean sea level of geodetic height in the same area. Through the numerical simulation of tidal wave motion in regional water, the tidal model is obtained. Based on the grid model, the tidal level is extracted from the tidal model for harmonic analysis, and a continuous depth datum model is established. Mean sea level geodetic height is from the CNES-CLS2015 Average Sea Surface Model. In this paper, the model is confirmed in the South Yellow Sea area. The results show that the accuracy of the depth datum model, and the depth datum geodetic height model meets the accuracy requirements of the datum.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Bathymetric surveys</subject><subject>Bathymetry</subject><subject>Boundary conditions</subject><subject>chart datum geodetic height</subject><subject>Coasts</subject><subject>Datum (elevation)</subject><subject>Depth measurement</subject><subject>Error correction</subject><subject>Fourier analysis</subject><subject>Geodetic accuracy</subject><subject>Harmonic analysis</subject><subject>Height</subject><subject>Information management</subject><subject>Inland waters</subject><subject>Mathematical models</subject><subject>Mean sea level</subject><subject>Measurement</subject><subject>Measurement methods</subject><subject>Methods</subject><subject>Model accuracy</subject><subject>non-tidal observation measuring</subject><subject>Numerical analysis</subject><subject>Offshore</subject><subject>Polynomials</subject><subject>Product information</subject><subject>Sea level</subject><subject>Sea surface</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>Surveys</subject><subject>Tidal models</subject><subject>Tidal waves</subject><subject>vertical datum transformation</subject><subject>Water depth</subject><subject>Water levels</subject><subject>Wave motion</subject><subject>Waves</subject><issn>2077-1312</issn><issn>2077-1312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIIODGB1jiSmEdO34cS4FSicehcI4ce9OmaupiO0j9ewxFiN3DPjQzO9IWxQWFa8Y03Kz6iJQCBWBwUJyUIOWIMloe_uuPi_MYV5BDlYKCOCnmY_KMaekdSZ5M_CamMNhE7nCbluTOpKEnU_QOY2fJI3aLZSLPeVyT1gcyfZnPya1Jy12PKWTEfAifuDsrjlqzjnj-W0-L94f7t8nj6Ol1OpuMn0aWg0ijSrSqqaxzVDcotNKoLKPaqopy5QQXYBqtuQS0EgS0vLRQ0kbbUgrGuWanxWyv67xZ1dvQ9Sbsam-6-mfhw6I2IXV2jXUpudG6MlY5x6VhBiunUdjvK4o3bda63Gttg_8YMKZ65YewyfYzV8iSUyFYRl3vUQuTRbtN61MwNqfDvrN-g22X92NZUa24lpAJV3uCDT7GgO2fTQr199vq_29jX2tph5g</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Tian, Chenyang</creator><creator>Guan, Minglei</creator><creator>Cheng, Yaxin</creator><creator>Zhang, Wei</creator><creator>Zhang, Dejin</creator><creator>Yang, Jinfeng</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TN</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8710-1730</orcidid></search><sort><creationdate>20230101</creationdate><title>A Method to Construct Depth Datum Geodesic Height Model for GNSS Bathymetric Survey</title><author>Tian, Chenyang ; Guan, Minglei ; Cheng, Yaxin ; Zhang, Wei ; Zhang, Dejin ; Yang, Jinfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-56f8b5cdd19be6989e8c319c85148d6460ab99470ec7060f42c021b9c27634493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Bathymetric surveys</topic><topic>Bathymetry</topic><topic>Boundary conditions</topic><topic>chart datum geodetic height</topic><topic>Coasts</topic><topic>Datum (elevation)</topic><topic>Depth measurement</topic><topic>Error correction</topic><topic>Fourier analysis</topic><topic>Geodetic accuracy</topic><topic>Harmonic analysis</topic><topic>Height</topic><topic>Information management</topic><topic>Inland waters</topic><topic>Mathematical models</topic><topic>Mean sea level</topic><topic>Measurement</topic><topic>Measurement methods</topic><topic>Methods</topic><topic>Model accuracy</topic><topic>non-tidal observation measuring</topic><topic>Numerical analysis</topic><topic>Offshore</topic><topic>Polynomials</topic><topic>Product information</topic><topic>Sea level</topic><topic>Sea surface</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>Surveys</topic><topic>Tidal models</topic><topic>Tidal waves</topic><topic>vertical datum transformation</topic><topic>Water depth</topic><topic>Water levels</topic><topic>Wave motion</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Chenyang</creatorcontrib><creatorcontrib>Guan, Minglei</creatorcontrib><creatorcontrib>Cheng, Yaxin</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Zhang, Dejin</creatorcontrib><creatorcontrib>Yang, Jinfeng</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of marine science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Chenyang</au><au>Guan, Minglei</au><au>Cheng, Yaxin</au><au>Zhang, Wei</au><au>Zhang, Dejin</au><au>Yang, Jinfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Method to Construct Depth Datum Geodesic Height Model for GNSS Bathymetric Survey</atitle><jtitle>Journal of marine science and engineering</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><issue>1</issue><spage>30</spage><pages>30-</pages><issn>2077-1312</issn><eissn>2077-1312</eissn><abstract>Water depth measurement requires the establishment of one or more tidal stations in the survey area for synchronous water level observation, and finally the water depth is estimated to the depth datum. The non-tidal observation measuring has high efficiency and avoids the water level correction error caused by tidal observation in traditional sounding. Therefore, non-tidal observation measuring has become an effective water depth measurement method in offshore and inland water. However, datum conversion in non-tide operation is mostly based on the polynomial fitting method. The accuracy of this method is influenced by the distribution of datum control points, topographic relief and operation ranges. In this paper, we present a method to construct a depth datum geodesic height model, which can directly obtain a bathymetric database of depth data in a GNSS bathymetric survey. The model incorporates the continuous depth datum and the mean sea level of geodetic height in the same area. Through the numerical simulation of tidal wave motion in regional water, the tidal model is obtained. Based on the grid model, the tidal level is extracted from the tidal model for harmonic analysis, and a continuous depth datum model is established. Mean sea level geodetic height is from the CNES-CLS2015 Average Sea Surface Model. In this paper, the model is confirmed in the South Yellow Sea area. The results show that the accuracy of the depth datum model, and the depth datum geodetic height model meets the accuracy requirements of the datum.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/jmse11010030</doi><orcidid>https://orcid.org/0000-0002-8710-1730</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2077-1312 |
ispartof | Journal of marine science and engineering, 2023-01, Vol.11 (1), p.30 |
issn | 2077-1312 2077-1312 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_274a995ac8dd47a3ae5d9e6c646084bf |
source | Publicly Available Content Database |
subjects | Accuracy Algorithms Bathymetric surveys Bathymetry Boundary conditions chart datum geodetic height Coasts Datum (elevation) Depth measurement Error correction Fourier analysis Geodetic accuracy Harmonic analysis Height Information management Inland waters Mathematical models Mean sea level Measurement Measurement methods Methods Model accuracy non-tidal observation measuring Numerical analysis Offshore Polynomials Product information Sea level Sea surface Simulation Simulation methods Surveys Tidal models Tidal waves vertical datum transformation Water depth Water levels Wave motion Waves |
title | A Method to Construct Depth Datum Geodesic Height Model for GNSS Bathymetric Survey |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A52%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Method%20to%20Construct%20Depth%20Datum%20Geodesic%20Height%20Model%20for%20GNSS%20Bathymetric%20Survey&rft.jtitle=Journal%20of%20marine%20science%20and%20engineering&rft.au=Tian,%20Chenyang&rft.date=2023-01-01&rft.volume=11&rft.issue=1&rft.spage=30&rft.pages=30-&rft.issn=2077-1312&rft.eissn=2077-1312&rft_id=info:doi/10.3390/jmse11010030&rft_dat=%3Cgale_doaj_%3EA751984970%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-56f8b5cdd19be6989e8c319c85148d6460ab99470ec7060f42c021b9c27634493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2767241663&rft_id=info:pmid/&rft_galeid=A751984970&rfr_iscdi=true |