Loading…
Interlayer Coupling and Pressure Engineering in Bilayer MoS2
Controlling the interlayer coupling by tuning lattice parameters through pressure engineering is an important route for tailoring the optoelectronic properties of two-dimensional materials. In this work, we report a pressure-dependent study on the exciton transitions of bilayer MoS2 exfoliated on a...
Saved in:
Published in: | Crystals (Basel) 2022-05, Vol.12 (5), p.693 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c370t-917fde7c0b6797b4a8689229814078ac85bf4bfe97f3953f6076c9a4c6c9cc803 |
---|---|
cites | cdi_FETCH-LOGICAL-c370t-917fde7c0b6797b4a8689229814078ac85bf4bfe97f3953f6076c9a4c6c9cc803 |
container_end_page | |
container_issue | 5 |
container_start_page | 693 |
container_title | Crystals (Basel) |
container_volume | 12 |
creator | Qiao, Wei Sun, Hao Fan, Xiaoyue Jin, Meiling Liu, Haiyang Tang, Tianhong Xiong, Lei Niu, Binghui Li, Xiang Wang, Gang |
description | Controlling the interlayer coupling by tuning lattice parameters through pressure engineering is an important route for tailoring the optoelectronic properties of two-dimensional materials. In this work, we report a pressure-dependent study on the exciton transitions of bilayer MoS2 exfoliated on a diamond anvil surface. The applied hydrostatic pressure changes from ambient pressure up to 11.05 GPa using a diamond anvil cell device. Raman, photoluminescence, and reflectivity spectra at room temperature are analyzed to characterize the interlayer coupling of this bilayer system. With the increase of pressure, the indirect exciton emission disappears completely at about 5 GPa. Importantly, we clearly observed the interlayer exciton from the reflectivity spectra, which becomes invisible at a low pressure around 1.26 GPa. This indicates that the interlayer exciton is very sensitive to the hydrostatic pressure due to the oscillator strength transfer from the direct transition to the indirect one. |
doi_str_mv | 10.3390/cryst12050693 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_27567789f0a342a09d577ad82cd8d219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_27567789f0a342a09d577ad82cd8d219</doaj_id><sourcerecordid>2670144245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-917fde7c0b6797b4a8689229814078ac85bf4bfe97f3953f6076c9a4c6c9cc803</originalsourceid><addsrcrecordid>eNpVUE1LxDAQDaLgsu7Re8FzdfLRTgJedFl1QVFQzyFNk6VLbdakPey_t2tFdA4zw8zjvccj5JzCJecKrmzcp54yKKBU_IjMGCDPBS_Y8Z_9lCxS2sJYWAIinZHrdde72Jq9i9kyDLu26TaZ6ersJbqUhuiyVbdpOufi4dF02W0zgZ_CKzsjJ960yS1-5py8363elg_54_P9ennzmFuO0OeKoq8dWqhKVFgJI0upGFOSCkBprCwqLyrvFHquCu5Ha6VVRtixWyuBz8l64q2D2epdbD5M3OtgGv19CHGjTewb2zrNsCgRpfJguGAGVF0gmloyW8uaUTVyXUxcuxg-B5d6vQ1D7Eb7mpUIVAgmihGVTygbQ0rR-V9VCvqQt_6XN_8CDghxKA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670144245</pqid></control><display><type>article</type><title>Interlayer Coupling and Pressure Engineering in Bilayer MoS2</title><source>ProQuest - Publicly Available Content Database</source><creator>Qiao, Wei ; Sun, Hao ; Fan, Xiaoyue ; Jin, Meiling ; Liu, Haiyang ; Tang, Tianhong ; Xiong, Lei ; Niu, Binghui ; Li, Xiang ; Wang, Gang</creator><creatorcontrib>Qiao, Wei ; Sun, Hao ; Fan, Xiaoyue ; Jin, Meiling ; Liu, Haiyang ; Tang, Tianhong ; Xiong, Lei ; Niu, Binghui ; Li, Xiang ; Wang, Gang</creatorcontrib><description>Controlling the interlayer coupling by tuning lattice parameters through pressure engineering is an important route for tailoring the optoelectronic properties of two-dimensional materials. In this work, we report a pressure-dependent study on the exciton transitions of bilayer MoS2 exfoliated on a diamond anvil surface. The applied hydrostatic pressure changes from ambient pressure up to 11.05 GPa using a diamond anvil cell device. Raman, photoluminescence, and reflectivity spectra at room temperature are analyzed to characterize the interlayer coupling of this bilayer system. With the increase of pressure, the indirect exciton emission disappears completely at about 5 GPa. Importantly, we clearly observed the interlayer exciton from the reflectivity spectra, which becomes invisible at a low pressure around 1.26 GPa. This indicates that the interlayer exciton is very sensitive to the hydrostatic pressure due to the oscillator strength transfer from the direct transition to the indirect one.</description><identifier>ISSN: 2073-4352</identifier><identifier>EISSN: 2073-4352</identifier><identifier>DOI: 10.3390/cryst12050693</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>2D materials ; Anvils ; bilayer MoS2 ; Coupling ; Diamond anvil cells ; Energy ; Excitons ; Hydrostatic pressure ; interlayer coupling ; Interlayers ; Lattice parameters ; Low pressure ; Molybdenum disulfide ; Optoelectronics ; Phase transitions ; Photoluminescence ; Pressure dependence ; pressure engineering ; Reflectance ; Room temperature ; Semiconductors ; Spectra ; Two dimensional materials</subject><ispartof>Crystals (Basel), 2022-05, Vol.12 (5), p.693</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-917fde7c0b6797b4a8689229814078ac85bf4bfe97f3953f6076c9a4c6c9cc803</citedby><cites>FETCH-LOGICAL-c370t-917fde7c0b6797b4a8689229814078ac85bf4bfe97f3953f6076c9a4c6c9cc803</cites><orcidid>0000-0003-4013-0259 ; 0000-0002-6688-4414</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2670144245/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2670144245?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Qiao, Wei</creatorcontrib><creatorcontrib>Sun, Hao</creatorcontrib><creatorcontrib>Fan, Xiaoyue</creatorcontrib><creatorcontrib>Jin, Meiling</creatorcontrib><creatorcontrib>Liu, Haiyang</creatorcontrib><creatorcontrib>Tang, Tianhong</creatorcontrib><creatorcontrib>Xiong, Lei</creatorcontrib><creatorcontrib>Niu, Binghui</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><title>Interlayer Coupling and Pressure Engineering in Bilayer MoS2</title><title>Crystals (Basel)</title><description>Controlling the interlayer coupling by tuning lattice parameters through pressure engineering is an important route for tailoring the optoelectronic properties of two-dimensional materials. In this work, we report a pressure-dependent study on the exciton transitions of bilayer MoS2 exfoliated on a diamond anvil surface. The applied hydrostatic pressure changes from ambient pressure up to 11.05 GPa using a diamond anvil cell device. Raman, photoluminescence, and reflectivity spectra at room temperature are analyzed to characterize the interlayer coupling of this bilayer system. With the increase of pressure, the indirect exciton emission disappears completely at about 5 GPa. Importantly, we clearly observed the interlayer exciton from the reflectivity spectra, which becomes invisible at a low pressure around 1.26 GPa. This indicates that the interlayer exciton is very sensitive to the hydrostatic pressure due to the oscillator strength transfer from the direct transition to the indirect one.</description><subject>2D materials</subject><subject>Anvils</subject><subject>bilayer MoS2</subject><subject>Coupling</subject><subject>Diamond anvil cells</subject><subject>Energy</subject><subject>Excitons</subject><subject>Hydrostatic pressure</subject><subject>interlayer coupling</subject><subject>Interlayers</subject><subject>Lattice parameters</subject><subject>Low pressure</subject><subject>Molybdenum disulfide</subject><subject>Optoelectronics</subject><subject>Phase transitions</subject><subject>Photoluminescence</subject><subject>Pressure dependence</subject><subject>pressure engineering</subject><subject>Reflectance</subject><subject>Room temperature</subject><subject>Semiconductors</subject><subject>Spectra</subject><subject>Two dimensional materials</subject><issn>2073-4352</issn><issn>2073-4352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUE1LxDAQDaLgsu7Re8FzdfLRTgJedFl1QVFQzyFNk6VLbdakPey_t2tFdA4zw8zjvccj5JzCJecKrmzcp54yKKBU_IjMGCDPBS_Y8Z_9lCxS2sJYWAIinZHrdde72Jq9i9kyDLu26TaZ6ersJbqUhuiyVbdpOufi4dF02W0zgZ_CKzsjJ960yS1-5py8363elg_54_P9ennzmFuO0OeKoq8dWqhKVFgJI0upGFOSCkBprCwqLyrvFHquCu5Ha6VVRtixWyuBz8l64q2D2epdbD5M3OtgGv19CHGjTewb2zrNsCgRpfJguGAGVF0gmloyW8uaUTVyXUxcuxg-B5d6vQ1D7Eb7mpUIVAgmihGVTygbQ0rR-V9VCvqQt_6XN_8CDghxKA</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Qiao, Wei</creator><creator>Sun, Hao</creator><creator>Fan, Xiaoyue</creator><creator>Jin, Meiling</creator><creator>Liu, Haiyang</creator><creator>Tang, Tianhong</creator><creator>Xiong, Lei</creator><creator>Niu, Binghui</creator><creator>Li, Xiang</creator><creator>Wang, Gang</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4013-0259</orcidid><orcidid>https://orcid.org/0000-0002-6688-4414</orcidid></search><sort><creationdate>20220501</creationdate><title>Interlayer Coupling and Pressure Engineering in Bilayer MoS2</title><author>Qiao, Wei ; Sun, Hao ; Fan, Xiaoyue ; Jin, Meiling ; Liu, Haiyang ; Tang, Tianhong ; Xiong, Lei ; Niu, Binghui ; Li, Xiang ; Wang, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-917fde7c0b6797b4a8689229814078ac85bf4bfe97f3953f6076c9a4c6c9cc803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>2D materials</topic><topic>Anvils</topic><topic>bilayer MoS2</topic><topic>Coupling</topic><topic>Diamond anvil cells</topic><topic>Energy</topic><topic>Excitons</topic><topic>Hydrostatic pressure</topic><topic>interlayer coupling</topic><topic>Interlayers</topic><topic>Lattice parameters</topic><topic>Low pressure</topic><topic>Molybdenum disulfide</topic><topic>Optoelectronics</topic><topic>Phase transitions</topic><topic>Photoluminescence</topic><topic>Pressure dependence</topic><topic>pressure engineering</topic><topic>Reflectance</topic><topic>Room temperature</topic><topic>Semiconductors</topic><topic>Spectra</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiao, Wei</creatorcontrib><creatorcontrib>Sun, Hao</creatorcontrib><creatorcontrib>Fan, Xiaoyue</creatorcontrib><creatorcontrib>Jin, Meiling</creatorcontrib><creatorcontrib>Liu, Haiyang</creatorcontrib><creatorcontrib>Tang, Tianhong</creatorcontrib><creatorcontrib>Xiong, Lei</creatorcontrib><creatorcontrib>Niu, Binghui</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Crystals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiao, Wei</au><au>Sun, Hao</au><au>Fan, Xiaoyue</au><au>Jin, Meiling</au><au>Liu, Haiyang</au><au>Tang, Tianhong</au><au>Xiong, Lei</au><au>Niu, Binghui</au><au>Li, Xiang</au><au>Wang, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interlayer Coupling and Pressure Engineering in Bilayer MoS2</atitle><jtitle>Crystals (Basel)</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>12</volume><issue>5</issue><spage>693</spage><pages>693-</pages><issn>2073-4352</issn><eissn>2073-4352</eissn><abstract>Controlling the interlayer coupling by tuning lattice parameters through pressure engineering is an important route for tailoring the optoelectronic properties of two-dimensional materials. In this work, we report a pressure-dependent study on the exciton transitions of bilayer MoS2 exfoliated on a diamond anvil surface. The applied hydrostatic pressure changes from ambient pressure up to 11.05 GPa using a diamond anvil cell device. Raman, photoluminescence, and reflectivity spectra at room temperature are analyzed to characterize the interlayer coupling of this bilayer system. With the increase of pressure, the indirect exciton emission disappears completely at about 5 GPa. Importantly, we clearly observed the interlayer exciton from the reflectivity spectra, which becomes invisible at a low pressure around 1.26 GPa. This indicates that the interlayer exciton is very sensitive to the hydrostatic pressure due to the oscillator strength transfer from the direct transition to the indirect one.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/cryst12050693</doi><orcidid>https://orcid.org/0000-0003-4013-0259</orcidid><orcidid>https://orcid.org/0000-0002-6688-4414</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4352 |
ispartof | Crystals (Basel), 2022-05, Vol.12 (5), p.693 |
issn | 2073-4352 2073-4352 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_27567789f0a342a09d577ad82cd8d219 |
source | ProQuest - Publicly Available Content Database |
subjects | 2D materials Anvils bilayer MoS2 Coupling Diamond anvil cells Energy Excitons Hydrostatic pressure interlayer coupling Interlayers Lattice parameters Low pressure Molybdenum disulfide Optoelectronics Phase transitions Photoluminescence Pressure dependence pressure engineering Reflectance Room temperature Semiconductors Spectra Two dimensional materials |
title | Interlayer Coupling and Pressure Engineering in Bilayer MoS2 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A05%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interlayer%20Coupling%20and%20Pressure%20Engineering%20in%20Bilayer%20MoS2&rft.jtitle=Crystals%20(Basel)&rft.au=Qiao,%20Wei&rft.date=2022-05-01&rft.volume=12&rft.issue=5&rft.spage=693&rft.pages=693-&rft.issn=2073-4352&rft.eissn=2073-4352&rft_id=info:doi/10.3390/cryst12050693&rft_dat=%3Cproquest_doaj_%3E2670144245%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-917fde7c0b6797b4a8689229814078ac85bf4bfe97f3953f6076c9a4c6c9cc803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2670144245&rft_id=info:pmid/&rfr_iscdi=true |