Loading…

Interlayer Coupling and Pressure Engineering in Bilayer MoS2

Controlling the interlayer coupling by tuning lattice parameters through pressure engineering is an important route for tailoring the optoelectronic properties of two-dimensional materials. In this work, we report a pressure-dependent study on the exciton transitions of bilayer MoS2 exfoliated on a...

Full description

Saved in:
Bibliographic Details
Published in:Crystals (Basel) 2022-05, Vol.12 (5), p.693
Main Authors: Qiao, Wei, Sun, Hao, Fan, Xiaoyue, Jin, Meiling, Liu, Haiyang, Tang, Tianhong, Xiong, Lei, Niu, Binghui, Li, Xiang, Wang, Gang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c370t-917fde7c0b6797b4a8689229814078ac85bf4bfe97f3953f6076c9a4c6c9cc803
cites cdi_FETCH-LOGICAL-c370t-917fde7c0b6797b4a8689229814078ac85bf4bfe97f3953f6076c9a4c6c9cc803
container_end_page
container_issue 5
container_start_page 693
container_title Crystals (Basel)
container_volume 12
creator Qiao, Wei
Sun, Hao
Fan, Xiaoyue
Jin, Meiling
Liu, Haiyang
Tang, Tianhong
Xiong, Lei
Niu, Binghui
Li, Xiang
Wang, Gang
description Controlling the interlayer coupling by tuning lattice parameters through pressure engineering is an important route for tailoring the optoelectronic properties of two-dimensional materials. In this work, we report a pressure-dependent study on the exciton transitions of bilayer MoS2 exfoliated on a diamond anvil surface. The applied hydrostatic pressure changes from ambient pressure up to 11.05 GPa using a diamond anvil cell device. Raman, photoluminescence, and reflectivity spectra at room temperature are analyzed to characterize the interlayer coupling of this bilayer system. With the increase of pressure, the indirect exciton emission disappears completely at about 5 GPa. Importantly, we clearly observed the interlayer exciton from the reflectivity spectra, which becomes invisible at a low pressure around 1.26 GPa. This indicates that the interlayer exciton is very sensitive to the hydrostatic pressure due to the oscillator strength transfer from the direct transition to the indirect one.
doi_str_mv 10.3390/cryst12050693
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_27567789f0a342a09d577ad82cd8d219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_27567789f0a342a09d577ad82cd8d219</doaj_id><sourcerecordid>2670144245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-917fde7c0b6797b4a8689229814078ac85bf4bfe97f3953f6076c9a4c6c9cc803</originalsourceid><addsrcrecordid>eNpVUE1LxDAQDaLgsu7Re8FzdfLRTgJedFl1QVFQzyFNk6VLbdakPey_t2tFdA4zw8zjvccj5JzCJecKrmzcp54yKKBU_IjMGCDPBS_Y8Z_9lCxS2sJYWAIinZHrdde72Jq9i9kyDLu26TaZ6ersJbqUhuiyVbdpOufi4dF02W0zgZ_CKzsjJ960yS1-5py8363elg_54_P9ennzmFuO0OeKoq8dWqhKVFgJI0upGFOSCkBprCwqLyrvFHquCu5Ha6VVRtixWyuBz8l64q2D2epdbD5M3OtgGv19CHGjTewb2zrNsCgRpfJguGAGVF0gmloyW8uaUTVyXUxcuxg-B5d6vQ1D7Eb7mpUIVAgmihGVTygbQ0rR-V9VCvqQt_6XN_8CDghxKA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670144245</pqid></control><display><type>article</type><title>Interlayer Coupling and Pressure Engineering in Bilayer MoS2</title><source>ProQuest - Publicly Available Content Database</source><creator>Qiao, Wei ; Sun, Hao ; Fan, Xiaoyue ; Jin, Meiling ; Liu, Haiyang ; Tang, Tianhong ; Xiong, Lei ; Niu, Binghui ; Li, Xiang ; Wang, Gang</creator><creatorcontrib>Qiao, Wei ; Sun, Hao ; Fan, Xiaoyue ; Jin, Meiling ; Liu, Haiyang ; Tang, Tianhong ; Xiong, Lei ; Niu, Binghui ; Li, Xiang ; Wang, Gang</creatorcontrib><description>Controlling the interlayer coupling by tuning lattice parameters through pressure engineering is an important route for tailoring the optoelectronic properties of two-dimensional materials. In this work, we report a pressure-dependent study on the exciton transitions of bilayer MoS2 exfoliated on a diamond anvil surface. The applied hydrostatic pressure changes from ambient pressure up to 11.05 GPa using a diamond anvil cell device. Raman, photoluminescence, and reflectivity spectra at room temperature are analyzed to characterize the interlayer coupling of this bilayer system. With the increase of pressure, the indirect exciton emission disappears completely at about 5 GPa. Importantly, we clearly observed the interlayer exciton from the reflectivity spectra, which becomes invisible at a low pressure around 1.26 GPa. This indicates that the interlayer exciton is very sensitive to the hydrostatic pressure due to the oscillator strength transfer from the direct transition to the indirect one.</description><identifier>ISSN: 2073-4352</identifier><identifier>EISSN: 2073-4352</identifier><identifier>DOI: 10.3390/cryst12050693</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>2D materials ; Anvils ; bilayer MoS2 ; Coupling ; Diamond anvil cells ; Energy ; Excitons ; Hydrostatic pressure ; interlayer coupling ; Interlayers ; Lattice parameters ; Low pressure ; Molybdenum disulfide ; Optoelectronics ; Phase transitions ; Photoluminescence ; Pressure dependence ; pressure engineering ; Reflectance ; Room temperature ; Semiconductors ; Spectra ; Two dimensional materials</subject><ispartof>Crystals (Basel), 2022-05, Vol.12 (5), p.693</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-917fde7c0b6797b4a8689229814078ac85bf4bfe97f3953f6076c9a4c6c9cc803</citedby><cites>FETCH-LOGICAL-c370t-917fde7c0b6797b4a8689229814078ac85bf4bfe97f3953f6076c9a4c6c9cc803</cites><orcidid>0000-0003-4013-0259 ; 0000-0002-6688-4414</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2670144245/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2670144245?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Qiao, Wei</creatorcontrib><creatorcontrib>Sun, Hao</creatorcontrib><creatorcontrib>Fan, Xiaoyue</creatorcontrib><creatorcontrib>Jin, Meiling</creatorcontrib><creatorcontrib>Liu, Haiyang</creatorcontrib><creatorcontrib>Tang, Tianhong</creatorcontrib><creatorcontrib>Xiong, Lei</creatorcontrib><creatorcontrib>Niu, Binghui</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><title>Interlayer Coupling and Pressure Engineering in Bilayer MoS2</title><title>Crystals (Basel)</title><description>Controlling the interlayer coupling by tuning lattice parameters through pressure engineering is an important route for tailoring the optoelectronic properties of two-dimensional materials. In this work, we report a pressure-dependent study on the exciton transitions of bilayer MoS2 exfoliated on a diamond anvil surface. The applied hydrostatic pressure changes from ambient pressure up to 11.05 GPa using a diamond anvil cell device. Raman, photoluminescence, and reflectivity spectra at room temperature are analyzed to characterize the interlayer coupling of this bilayer system. With the increase of pressure, the indirect exciton emission disappears completely at about 5 GPa. Importantly, we clearly observed the interlayer exciton from the reflectivity spectra, which becomes invisible at a low pressure around 1.26 GPa. This indicates that the interlayer exciton is very sensitive to the hydrostatic pressure due to the oscillator strength transfer from the direct transition to the indirect one.</description><subject>2D materials</subject><subject>Anvils</subject><subject>bilayer MoS2</subject><subject>Coupling</subject><subject>Diamond anvil cells</subject><subject>Energy</subject><subject>Excitons</subject><subject>Hydrostatic pressure</subject><subject>interlayer coupling</subject><subject>Interlayers</subject><subject>Lattice parameters</subject><subject>Low pressure</subject><subject>Molybdenum disulfide</subject><subject>Optoelectronics</subject><subject>Phase transitions</subject><subject>Photoluminescence</subject><subject>Pressure dependence</subject><subject>pressure engineering</subject><subject>Reflectance</subject><subject>Room temperature</subject><subject>Semiconductors</subject><subject>Spectra</subject><subject>Two dimensional materials</subject><issn>2073-4352</issn><issn>2073-4352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUE1LxDAQDaLgsu7Re8FzdfLRTgJedFl1QVFQzyFNk6VLbdakPey_t2tFdA4zw8zjvccj5JzCJecKrmzcp54yKKBU_IjMGCDPBS_Y8Z_9lCxS2sJYWAIinZHrdde72Jq9i9kyDLu26TaZ6ersJbqUhuiyVbdpOufi4dF02W0zgZ_CKzsjJ960yS1-5py8363elg_54_P9ennzmFuO0OeKoq8dWqhKVFgJI0upGFOSCkBprCwqLyrvFHquCu5Ha6VVRtixWyuBz8l64q2D2epdbD5M3OtgGv19CHGjTewb2zrNsCgRpfJguGAGVF0gmloyW8uaUTVyXUxcuxg-B5d6vQ1D7Eb7mpUIVAgmihGVTygbQ0rR-V9VCvqQt_6XN_8CDghxKA</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Qiao, Wei</creator><creator>Sun, Hao</creator><creator>Fan, Xiaoyue</creator><creator>Jin, Meiling</creator><creator>Liu, Haiyang</creator><creator>Tang, Tianhong</creator><creator>Xiong, Lei</creator><creator>Niu, Binghui</creator><creator>Li, Xiang</creator><creator>Wang, Gang</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4013-0259</orcidid><orcidid>https://orcid.org/0000-0002-6688-4414</orcidid></search><sort><creationdate>20220501</creationdate><title>Interlayer Coupling and Pressure Engineering in Bilayer MoS2</title><author>Qiao, Wei ; Sun, Hao ; Fan, Xiaoyue ; Jin, Meiling ; Liu, Haiyang ; Tang, Tianhong ; Xiong, Lei ; Niu, Binghui ; Li, Xiang ; Wang, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-917fde7c0b6797b4a8689229814078ac85bf4bfe97f3953f6076c9a4c6c9cc803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>2D materials</topic><topic>Anvils</topic><topic>bilayer MoS2</topic><topic>Coupling</topic><topic>Diamond anvil cells</topic><topic>Energy</topic><topic>Excitons</topic><topic>Hydrostatic pressure</topic><topic>interlayer coupling</topic><topic>Interlayers</topic><topic>Lattice parameters</topic><topic>Low pressure</topic><topic>Molybdenum disulfide</topic><topic>Optoelectronics</topic><topic>Phase transitions</topic><topic>Photoluminescence</topic><topic>Pressure dependence</topic><topic>pressure engineering</topic><topic>Reflectance</topic><topic>Room temperature</topic><topic>Semiconductors</topic><topic>Spectra</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiao, Wei</creatorcontrib><creatorcontrib>Sun, Hao</creatorcontrib><creatorcontrib>Fan, Xiaoyue</creatorcontrib><creatorcontrib>Jin, Meiling</creatorcontrib><creatorcontrib>Liu, Haiyang</creatorcontrib><creatorcontrib>Tang, Tianhong</creatorcontrib><creatorcontrib>Xiong, Lei</creatorcontrib><creatorcontrib>Niu, Binghui</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Crystals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiao, Wei</au><au>Sun, Hao</au><au>Fan, Xiaoyue</au><au>Jin, Meiling</au><au>Liu, Haiyang</au><au>Tang, Tianhong</au><au>Xiong, Lei</au><au>Niu, Binghui</au><au>Li, Xiang</au><au>Wang, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interlayer Coupling and Pressure Engineering in Bilayer MoS2</atitle><jtitle>Crystals (Basel)</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>12</volume><issue>5</issue><spage>693</spage><pages>693-</pages><issn>2073-4352</issn><eissn>2073-4352</eissn><abstract>Controlling the interlayer coupling by tuning lattice parameters through pressure engineering is an important route for tailoring the optoelectronic properties of two-dimensional materials. In this work, we report a pressure-dependent study on the exciton transitions of bilayer MoS2 exfoliated on a diamond anvil surface. The applied hydrostatic pressure changes from ambient pressure up to 11.05 GPa using a diamond anvil cell device. Raman, photoluminescence, and reflectivity spectra at room temperature are analyzed to characterize the interlayer coupling of this bilayer system. With the increase of pressure, the indirect exciton emission disappears completely at about 5 GPa. Importantly, we clearly observed the interlayer exciton from the reflectivity spectra, which becomes invisible at a low pressure around 1.26 GPa. This indicates that the interlayer exciton is very sensitive to the hydrostatic pressure due to the oscillator strength transfer from the direct transition to the indirect one.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/cryst12050693</doi><orcidid>https://orcid.org/0000-0003-4013-0259</orcidid><orcidid>https://orcid.org/0000-0002-6688-4414</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4352
ispartof Crystals (Basel), 2022-05, Vol.12 (5), p.693
issn 2073-4352
2073-4352
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_27567789f0a342a09d577ad82cd8d219
source ProQuest - Publicly Available Content Database
subjects 2D materials
Anvils
bilayer MoS2
Coupling
Diamond anvil cells
Energy
Excitons
Hydrostatic pressure
interlayer coupling
Interlayers
Lattice parameters
Low pressure
Molybdenum disulfide
Optoelectronics
Phase transitions
Photoluminescence
Pressure dependence
pressure engineering
Reflectance
Room temperature
Semiconductors
Spectra
Two dimensional materials
title Interlayer Coupling and Pressure Engineering in Bilayer MoS2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A05%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interlayer%20Coupling%20and%20Pressure%20Engineering%20in%20Bilayer%20MoS2&rft.jtitle=Crystals%20(Basel)&rft.au=Qiao,%20Wei&rft.date=2022-05-01&rft.volume=12&rft.issue=5&rft.spage=693&rft.pages=693-&rft.issn=2073-4352&rft.eissn=2073-4352&rft_id=info:doi/10.3390/cryst12050693&rft_dat=%3Cproquest_doaj_%3E2670144245%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-917fde7c0b6797b4a8689229814078ac85bf4bfe97f3953f6076c9a4c6c9cc803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2670144245&rft_id=info:pmid/&rfr_iscdi=true