Loading…
Image-Based Multi-Agent Reinforcement Learning for Demand–Capacity Balancing
Air traffic flow management (ATFM) is of crucial importance to the European Air Traffic Control System due to two factors: first, the impact of ATFM, including safety implications on ATC operations; second, the possible consequences of ATFM measures on both airports and airlines operations. Thus, th...
Saved in:
Published in: | Aerospace 2022-10, Vol.9 (10), p.599 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Air traffic flow management (ATFM) is of crucial importance to the European Air Traffic Control System due to two factors: first, the impact of ATFM, including safety implications on ATC operations; second, the possible consequences of ATFM measures on both airports and airlines operations. Thus, the central flow management unit continually seeks to improve traffic flow management to reduce delays and congestion. In this work, we investigated the use of reinforcement learning (RL) methods to compute policies to solve demand–capacity imbalances (a.k.a. congestion) during the pre-tactical phase. To address cases where the expected demands exceed the airspace sector capacity, we considered agents representing flights who have to decide on ground delays jointly. To overcome scalability issues, we propose using raw pixel images as input, which can represent an arbitrary number of agents without changing the system’s architecture. This article compares deep Q-learning and deep deterministic policy gradient algorithms with different configurations. Experimental results, using real-world data for training and validation, confirm the effectiveness of our approach to resolving demand–capacity balancing problems, showing the robustness of the RL approach presented in this article. |
---|---|
ISSN: | 2226-4310 2226-4310 |
DOI: | 10.3390/aerospace9100599 |