Loading…

A multi-model approach to Saint-Venant equations: A stability study by LMIs

This paper deals with the stability study of the nonlinear Saint-Venant Partial Differential Equation (PDE). The proposed approach is based on the multi-model concept which takes into account some Linear Time Invariant (LTI) models defined around a set of operating points. This method allows describ...

Full description

Saved in:
Bibliographic Details
Published in:International journal of applied mathematics and computer science 2012-09, Vol.22 (3), p.539-550
Main Authors: Dos Santos Martins, Valérie, Rodrigues, Mickael, Diagne, Mamadou
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c575t-3a36e6de3e753fabd8c77c4a7d4845eb8a1a066d4f5f46362bcbc779a76a05273
cites
container_end_page 550
container_issue 3
container_start_page 539
container_title International journal of applied mathematics and computer science
container_volume 22
creator Dos Santos Martins, Valérie
Rodrigues, Mickael
Diagne, Mamadou
description This paper deals with the stability study of the nonlinear Saint-Venant Partial Differential Equation (PDE). The proposed approach is based on the multi-model concept which takes into account some Linear Time Invariant (LTI) models defined around a set of operating points. This method allows describing the dynamics of this nonlinear system in an infinite dimensional space over a wide operating range. A stability analysis of the nonlinear Saint-Venant PDE is proposed both by using Linear Matrix Inequalities (LMIs) and an Internal Model Boundary Control (IMBC) structure. The method is applied both in simulations and real experiments through a microchannel, illustrating thus the theoretical results developed in the paper.
doi_str_mv 10.2478/v10006-012-0041-6
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_27d0efaec3a64effa8da501c95121ad5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_27d0efaec3a64effa8da501c95121ad5</doaj_id><sourcerecordid>2929026741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-3a36e6de3e753fabd8c77c4a7d4845eb8a1a066d4f5f46362bcbc779a76a05273</originalsourceid><addsrcrecordid>eNp1UMmO1DAQjRBIDAMfwM0SZ0N5T7ig1oilNY04sFytiu0MaaXjHtsB5e_xEDSaC6d6Kr2l6jXNSwavuTTtm18MADQFximAZFQ_ai44tIK2suOPH-CnzbOcjwC8AyMumusdOS1TGekp-jARPJ9TRPeTlEi-4jgX-iPMOBcSbhcsY5zzW7IjuWA_TmNZK1r8SvqVHD7v8_PmyYBTDi_-zcvm-4f3364-0cOXj_ur3YE6ZVShAoUO2gcRjBID9r51xjiJxstWqtC3yBC09nJQg9RC8971ldGh0QiKG3HZ7DdfH_Foz2k8YVptxNH-XcR0YzGV0U3BcuMhDBicQC3DMGDrUQFznWKcoVfV69XmVf--XUIu9hiXNNfzLROcgQbesspiG8ulmHMKw30qA3vXv936t7V_e9e_1VXzbtP8xqmE5MNNWtYKHgT8T8u5UKITfwAENIuh</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1321060281</pqid></control><display><type>article</type><title>A multi-model approach to Saint-Venant equations: A stability study by LMIs</title><source>Freely Accessible Journals</source><source>Publicly Available Content (ProQuest)</source><creator>Dos Santos Martins, Valérie ; Rodrigues, Mickael ; Diagne, Mamadou</creator><creatorcontrib>Dos Santos Martins, Valérie ; Rodrigues, Mickael ; Diagne, Mamadou</creatorcontrib><description>This paper deals with the stability study of the nonlinear Saint-Venant Partial Differential Equation (PDE). The proposed approach is based on the multi-model concept which takes into account some Linear Time Invariant (LTI) models defined around a set of operating points. This method allows describing the dynamics of this nonlinear system in an infinite dimensional space over a wide operating range. A stability analysis of the nonlinear Saint-Venant PDE is proposed both by using Linear Matrix Inequalities (LMIs) and an Internal Model Boundary Control (IMBC) structure. The method is applied both in simulations and real experiments through a microchannel, illustrating thus the theoretical results developed in the paper.</description><identifier>ISSN: 2083-8492</identifier><identifier>ISSN: 1641-876X</identifier><identifier>EISSN: 2083-8492</identifier><identifier>DOI: 10.2478/v10006-012-0041-6</identifier><language>eng</language><publisher>Zielona Góra: Versita</publisher><subject>exponential stability ; infinite dimensional system ; internal model boundary control ; LMIs ; multi-model ; Saint-Venant equation ; strongly continuous semigroup</subject><ispartof>International journal of applied mathematics and computer science, 2012-09, Vol.22 (3), p.539-550</ispartof><rights>Copyright Versita Sep 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-3a36e6de3e753fabd8c77c4a7d4845eb8a1a066d4f5f46362bcbc779a76a05273</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1321060281?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Dos Santos Martins, Valérie</creatorcontrib><creatorcontrib>Rodrigues, Mickael</creatorcontrib><creatorcontrib>Diagne, Mamadou</creatorcontrib><title>A multi-model approach to Saint-Venant equations: A stability study by LMIs</title><title>International journal of applied mathematics and computer science</title><description>This paper deals with the stability study of the nonlinear Saint-Venant Partial Differential Equation (PDE). The proposed approach is based on the multi-model concept which takes into account some Linear Time Invariant (LTI) models defined around a set of operating points. This method allows describing the dynamics of this nonlinear system in an infinite dimensional space over a wide operating range. A stability analysis of the nonlinear Saint-Venant PDE is proposed both by using Linear Matrix Inequalities (LMIs) and an Internal Model Boundary Control (IMBC) structure. The method is applied both in simulations and real experiments through a microchannel, illustrating thus the theoretical results developed in the paper.</description><subject>exponential stability</subject><subject>infinite dimensional system</subject><subject>internal model boundary control</subject><subject>LMIs</subject><subject>multi-model</subject><subject>Saint-Venant equation</subject><subject>strongly continuous semigroup</subject><issn>2083-8492</issn><issn>1641-876X</issn><issn>2083-8492</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1UMmO1DAQjRBIDAMfwM0SZ0N5T7ig1oilNY04sFytiu0MaaXjHtsB5e_xEDSaC6d6Kr2l6jXNSwavuTTtm18MADQFximAZFQ_ai44tIK2suOPH-CnzbOcjwC8AyMumusdOS1TGekp-jARPJ9TRPeTlEi-4jgX-iPMOBcSbhcsY5zzW7IjuWA_TmNZK1r8SvqVHD7v8_PmyYBTDi_-zcvm-4f3364-0cOXj_ur3YE6ZVShAoUO2gcRjBID9r51xjiJxstWqtC3yBC09nJQg9RC8971ldGh0QiKG3HZ7DdfH_Foz2k8YVptxNH-XcR0YzGV0U3BcuMhDBicQC3DMGDrUQFznWKcoVfV69XmVf--XUIu9hiXNNfzLROcgQbesspiG8ulmHMKw30qA3vXv936t7V_e9e_1VXzbtP8xqmE5MNNWtYKHgT8T8u5UKITfwAENIuh</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Dos Santos Martins, Valérie</creator><creator>Rodrigues, Mickael</creator><creator>Diagne, Mamadou</creator><general>Versita</general><general>De Gruyter Poland</general><general>Sciendo</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>DOA</scope></search><sort><creationdate>20120901</creationdate><title>A multi-model approach to Saint-Venant equations: A stability study by LMIs</title><author>Dos Santos Martins, Valérie ; Rodrigues, Mickael ; Diagne, Mamadou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-3a36e6de3e753fabd8c77c4a7d4845eb8a1a066d4f5f46362bcbc779a76a05273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>exponential stability</topic><topic>infinite dimensional system</topic><topic>internal model boundary control</topic><topic>LMIs</topic><topic>multi-model</topic><topic>Saint-Venant equation</topic><topic>strongly continuous semigroup</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dos Santos Martins, Valérie</creatorcontrib><creatorcontrib>Rodrigues, Mickael</creatorcontrib><creatorcontrib>Diagne, Mamadou</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>International journal of applied mathematics and computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dos Santos Martins, Valérie</au><au>Rodrigues, Mickael</au><au>Diagne, Mamadou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi-model approach to Saint-Venant equations: A stability study by LMIs</atitle><jtitle>International journal of applied mathematics and computer science</jtitle><date>2012-09-01</date><risdate>2012</risdate><volume>22</volume><issue>3</issue><spage>539</spage><epage>550</epage><pages>539-550</pages><issn>2083-8492</issn><issn>1641-876X</issn><eissn>2083-8492</eissn><abstract>This paper deals with the stability study of the nonlinear Saint-Venant Partial Differential Equation (PDE). The proposed approach is based on the multi-model concept which takes into account some Linear Time Invariant (LTI) models defined around a set of operating points. This method allows describing the dynamics of this nonlinear system in an infinite dimensional space over a wide operating range. A stability analysis of the nonlinear Saint-Venant PDE is proposed both by using Linear Matrix Inequalities (LMIs) and an Internal Model Boundary Control (IMBC) structure. The method is applied both in simulations and real experiments through a microchannel, illustrating thus the theoretical results developed in the paper.</abstract><cop>Zielona Góra</cop><pub>Versita</pub><doi>10.2478/v10006-012-0041-6</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2083-8492
ispartof International journal of applied mathematics and computer science, 2012-09, Vol.22 (3), p.539-550
issn 2083-8492
1641-876X
2083-8492
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_27d0efaec3a64effa8da501c95121ad5
source Freely Accessible Journals; Publicly Available Content (ProQuest)
subjects exponential stability
infinite dimensional system
internal model boundary control
LMIs
multi-model
Saint-Venant equation
strongly continuous semigroup
title A multi-model approach to Saint-Venant equations: A stability study by LMIs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A27%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi-model%20approach%20to%20Saint-Venant%20equations:%20A%20stability%20study%20by%20LMIs&rft.jtitle=International%20journal%20of%20applied%20mathematics%20and%20computer%20science&rft.au=Dos%20Santos%20Martins,%20Val%C3%A9rie&rft.date=2012-09-01&rft.volume=22&rft.issue=3&rft.spage=539&rft.epage=550&rft.pages=539-550&rft.issn=2083-8492&rft.eissn=2083-8492&rft_id=info:doi/10.2478/v10006-012-0041-6&rft_dat=%3Cproquest_doaj_%3E2929026741%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c575t-3a36e6de3e753fabd8c77c4a7d4845eb8a1a066d4f5f46362bcbc779a76a05273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1321060281&rft_id=info:pmid/&rfr_iscdi=true