Loading…

A delay in vesicle endocytosis by a C-terminal fragment of N-cadherin enhances Aβ synaptotoxicity

Synaptotoxic Aβ oligomers are thought to play a major role in the early pathology of Alzheimer´s disease (AD). However, the molecular mechanisms involved in Aβ-induced synaptic dysfunction and synapse damage remain largely unclear. Previously, Aβ synaptotoxicity has been reported to be enhanced by i...

Full description

Saved in:
Bibliographic Details
Published in:Cell death discovery 2023-12, Vol.9 (1), p.444-444, Article 444
Main Authors: Teng, Zenghui, Kartalou, Georgia-Ioanna, Dagar, Sushma, Fraering, Patrick C., Lessmann, Volkmar, Gottmann, Kurt
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Synaptotoxic Aβ oligomers are thought to play a major role in the early pathology of Alzheimer´s disease (AD). However, the molecular mechanisms involved in Aβ-induced synaptic dysfunction and synapse damage remain largely unclear. Previously, Aβ synaptotoxicity has been reported to be enhanced by increased levels of a C-terminal fragment of the synaptic adhesion molecule N-cadherin that is generated by proteolytic shedding of the extracellular domains [ 1 ]. To address the molecular mechanisms involved in this process, we have now studied the functional synaptic changes induced by C-terminal fragments (CTF1) of synaptic adhesion proteins. We used synaptophysin-pHluorin (SypHy) fluorescence imaging to monitor synaptic vesicle exo- and endocytosis in cultures of mouse cortical neurons. We increased the levels of C-terminal fragments of synaptic adhesion proteins by pharmacologically inhibiting γ-secretase, which further degrades CTF1 fragments. We found that this intervention caused a delay in synaptic vesicle endocytosis. A similar effect was induced by overexpression of N-cadherin CTF1, but not by overexpression of Neurexin3β CTF1. Based on these observations, we further studied whether directly modulating synaptic vesicle endocytosis enhances Aβ synaptotoxicity. We pharmacologically induced a delayed synaptic vesicle endocytosis by a low concentration of the endocytosis inhibitor dynasore. This treatment enhanced synaptoxicity of Aβ oligomers as indicated by a reduced frequency of miniature postsynaptic currents. In conclusion, we propose that delayed endocytosis results in prolonged exposure of synaptic vesicle membranes to the extracellular space, thus enabling enhanced vesicle membrane binding of Aβ oligomers. This might in turn promote the endocytic uptake of toxic Aβ oligomers and might thus play an important role in intracellular Aβ-mediated synaptotoxicity in AD.
ISSN:2058-7716
2058-7716
DOI:10.1038/s41420-023-01739-w