Loading…

Decoration of 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid (DOTA) with N‐oxides increases the T1 relaxivity of Gd‐complexes

High complex stability and longitudinal relaxivity of Gd‐based contrast agents are important requirements for magnetic resonance imaging (MRI) because they ensure patient safety and contribute to measurement sensitivity. Charged and zwitterionic Gd3+‐complexes of the well‐known chelator 1,4,7,10‐tet...

Full description

Saved in:
Bibliographic Details
Published in:ChemistryOpen (Weinheim) 2024-07, Vol.13 (7), p.e202300298-n/a
Main Authors: Kerpa, Svenja, Schulze, Verena R., Holzapfel, Malte, Cvancar, Lina, Fischer, Markus, Maison, Wolfgang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 7
container_start_page e202300298
container_title ChemistryOpen (Weinheim)
container_volume 13
creator Kerpa, Svenja
Schulze, Verena R.
Holzapfel, Malte
Cvancar, Lina
Fischer, Markus
Maison, Wolfgang
description High complex stability and longitudinal relaxivity of Gd‐based contrast agents are important requirements for magnetic resonance imaging (MRI) because they ensure patient safety and contribute to measurement sensitivity. Charged and zwitterionic Gd3+‐complexes of the well‐known chelator 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid (DOTA) provide an excellent basis for the development of safe and sensitive contrast agents. In this report, we describe the synthesis of DOTA‐NOx, a DOTA derivative with four N‐oxide functionalities via “click” functionalization of the tetraazide DOTAZA. The resulting complexes Gd‐DOTA‐NOx and Eu‐DOTA‐NOx are stable compounds in aqueous solution. NMR‐spectroscopic characterization revealed a high excess of the twisted square antiprismatic (TSAP) coordination geometry over square antiprismatic (SAP). The longitudinal relaxivity of Gd‐DOTA‐NOx was found to be r1=7.7 mm−1 s−1 (1.41 T, 37 °C), an unusually high value for DOTA complexes of comparable weight. We attribute this high relaxivity to the steric influence and an ordering effect on outer sphere water molecules surrounding the complex generated by the strongly hydrated N‐oxide groups. Moreover, Gd‐DOTA‐NOx was found to be stable against transchelation with high excess of EDTA (200 eq) over a period of 36 h, and it has a similar in vitro cell toxicity as clinically used DOTA‐based GBCAs. Decoration with N‐oxide groups is a valuable method to increase the T1‐relaxivity of the well‐known cyclic Gd‐chelator DOTA. The synthesis of Gd‐DOTA‐NOx has been achieved via copper catalyzed alkyne azide cycloaddition. The complex is water soluble, stable against transchelation, has a twisted square antiprismatic (TSAP) complex geometry and a high T1‐relaxivity of 7.7 mm−1 s−1 (1.41 T, 37 °C).
doi_str_mv 10.1002/open.202300298
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_27e8d64050a14218b350f4ccc1c7b900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_27e8d64050a14218b350f4ccc1c7b900</doaj_id><sourcerecordid>3076827487</sourcerecordid><originalsourceid>FETCH-LOGICAL-d3728-ef6bc056c46fc404d20a71a6642f8e0f7af4bfd834c1159b06fb565504ac19283</originalsourceid><addsrcrecordid>eNplkU1vEzEQhlcIJKrSK-eVuBQpaccfa-8eq7aUSlXDIZwt73hMHW3WwbtpE078BPiL_JI6BEUIfJkPPX7tmbco3jI4YwD8PK6oP-PARS6a-kVxxFnDpkwo8fKv_HVxMgwLyEfLhlXqqPh5RRiTHUPsy-hLNpETPWHw6_uPkcZk7TeLW-yii47Q9pT7_yFIY8DSYnDl6dVsfvG-fArjQ3mfgbgJjoYy9JjIDjkbH6icszJRZzfhMYzb3aM3LqMYl6uONjS8KV552w108iceF58_XM8vP07vZje3lxd3Uyc0r6fkVYtQKZTKowTpOFjNrFKS-5rAa-tl610tJDJWNS0o31aqqkBaZA2vxXFxu9d10S7MKoWlTVsTbTC_GzF9MTblyToyXFPtlIQKLJOc1a2owEtEZKjbBiBrne61Vil-XdMwmmUYkLouryyuB8ObfK9iTPCMvvsHXcR16vOkRoBWNdey1plq9tRT6Gh7-B0Ds3Pb7Nw2B7fN7NP1_aESz_Hhoig</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3076827487</pqid></control><display><type>article</type><title>Decoration of 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid (DOTA) with N‐oxides increases the T1 relaxivity of Gd‐complexes</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kerpa, Svenja ; Schulze, Verena R. ; Holzapfel, Malte ; Cvancar, Lina ; Fischer, Markus ; Maison, Wolfgang</creator><creatorcontrib>Kerpa, Svenja ; Schulze, Verena R. ; Holzapfel, Malte ; Cvancar, Lina ; Fischer, Markus ; Maison, Wolfgang</creatorcontrib><description>High complex stability and longitudinal relaxivity of Gd‐based contrast agents are important requirements for magnetic resonance imaging (MRI) because they ensure patient safety and contribute to measurement sensitivity. Charged and zwitterionic Gd3+‐complexes of the well‐known chelator 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid (DOTA) provide an excellent basis for the development of safe and sensitive contrast agents. In this report, we describe the synthesis of DOTA‐NOx, a DOTA derivative with four N‐oxide functionalities via “click” functionalization of the tetraazide DOTAZA. The resulting complexes Gd‐DOTA‐NOx and Eu‐DOTA‐NOx are stable compounds in aqueous solution. NMR‐spectroscopic characterization revealed a high excess of the twisted square antiprismatic (TSAP) coordination geometry over square antiprismatic (SAP). The longitudinal relaxivity of Gd‐DOTA‐NOx was found to be r1=7.7 mm−1 s−1 (1.41 T, 37 °C), an unusually high value for DOTA complexes of comparable weight. We attribute this high relaxivity to the steric influence and an ordering effect on outer sphere water molecules surrounding the complex generated by the strongly hydrated N‐oxide groups. Moreover, Gd‐DOTA‐NOx was found to be stable against transchelation with high excess of EDTA (200 eq) over a period of 36 h, and it has a similar in vitro cell toxicity as clinically used DOTA‐based GBCAs. Decoration with N‐oxide groups is a valuable method to increase the T1‐relaxivity of the well‐known cyclic Gd‐chelator DOTA. The synthesis of Gd‐DOTA‐NOx has been achieved via copper catalyzed alkyne azide cycloaddition. The complex is water soluble, stable against transchelation, has a twisted square antiprismatic (TSAP) complex geometry and a high T1‐relaxivity of 7.7 mm−1 s−1 (1.41 T, 37 °C).</description><identifier>ISSN: 2191-1363</identifier><identifier>EISSN: 2191-1363</identifier><identifier>DOI: 10.1002/open.202300298</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>Aqueous solutions ; Contrast agents ; Cu-catalyzed azide alkyne cycloaddition (CuAAC) ; Ethylenediaminetetraacetic acids ; Gadolinium ; Gadolinium based contrast agents ; Geometry ; Hydration ; Magnetic resonance imaging ; magnetic resonance imaging (MRI) ; Molecular weight ; N-oxides ; Nitrogen oxides ; NMR ; Nuclear magnetic resonance ; Oxidation ; T1 relaxivity ; Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) ; Toxicity ; Water</subject><ispartof>ChemistryOpen (Weinheim), 2024-07, Vol.13 (7), p.e202300298-n/a</ispartof><rights>2023 The Authors. ChemistryOpen published by Wiley-VCH GmbH</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 The Authors. ChemistryOpen published by Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7243-4199 ; 0000-0003-2793-5722 ; 0000-0003-1533-708X ; 0009-0005-8373-8776</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3076827487/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3076827487?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,11541,25731,27901,27902,36989,36990,44566,46027,46451,74869</link.rule.ids></links><search><creatorcontrib>Kerpa, Svenja</creatorcontrib><creatorcontrib>Schulze, Verena R.</creatorcontrib><creatorcontrib>Holzapfel, Malte</creatorcontrib><creatorcontrib>Cvancar, Lina</creatorcontrib><creatorcontrib>Fischer, Markus</creatorcontrib><creatorcontrib>Maison, Wolfgang</creatorcontrib><title>Decoration of 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid (DOTA) with N‐oxides increases the T1 relaxivity of Gd‐complexes</title><title>ChemistryOpen (Weinheim)</title><description>High complex stability and longitudinal relaxivity of Gd‐based contrast agents are important requirements for magnetic resonance imaging (MRI) because they ensure patient safety and contribute to measurement sensitivity. Charged and zwitterionic Gd3+‐complexes of the well‐known chelator 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid (DOTA) provide an excellent basis for the development of safe and sensitive contrast agents. In this report, we describe the synthesis of DOTA‐NOx, a DOTA derivative with four N‐oxide functionalities via “click” functionalization of the tetraazide DOTAZA. The resulting complexes Gd‐DOTA‐NOx and Eu‐DOTA‐NOx are stable compounds in aqueous solution. NMR‐spectroscopic characterization revealed a high excess of the twisted square antiprismatic (TSAP) coordination geometry over square antiprismatic (SAP). The longitudinal relaxivity of Gd‐DOTA‐NOx was found to be r1=7.7 mm−1 s−1 (1.41 T, 37 °C), an unusually high value for DOTA complexes of comparable weight. We attribute this high relaxivity to the steric influence and an ordering effect on outer sphere water molecules surrounding the complex generated by the strongly hydrated N‐oxide groups. Moreover, Gd‐DOTA‐NOx was found to be stable against transchelation with high excess of EDTA (200 eq) over a period of 36 h, and it has a similar in vitro cell toxicity as clinically used DOTA‐based GBCAs. Decoration with N‐oxide groups is a valuable method to increase the T1‐relaxivity of the well‐known cyclic Gd‐chelator DOTA. The synthesis of Gd‐DOTA‐NOx has been achieved via copper catalyzed alkyne azide cycloaddition. The complex is water soluble, stable against transchelation, has a twisted square antiprismatic (TSAP) complex geometry and a high T1‐relaxivity of 7.7 mm−1 s−1 (1.41 T, 37 °C).</description><subject>Aqueous solutions</subject><subject>Contrast agents</subject><subject>Cu-catalyzed azide alkyne cycloaddition (CuAAC)</subject><subject>Ethylenediaminetetraacetic acids</subject><subject>Gadolinium</subject><subject>Gadolinium based contrast agents</subject><subject>Geometry</subject><subject>Hydration</subject><subject>Magnetic resonance imaging</subject><subject>magnetic resonance imaging (MRI)</subject><subject>Molecular weight</subject><subject>N-oxides</subject><subject>Nitrogen oxides</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Oxidation</subject><subject>T1 relaxivity</subject><subject>Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)</subject><subject>Toxicity</subject><subject>Water</subject><issn>2191-1363</issn><issn>2191-1363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkU1vEzEQhlcIJKrSK-eVuBQpaccfa-8eq7aUSlXDIZwt73hMHW3WwbtpE078BPiL_JI6BEUIfJkPPX7tmbco3jI4YwD8PK6oP-PARS6a-kVxxFnDpkwo8fKv_HVxMgwLyEfLhlXqqPh5RRiTHUPsy-hLNpETPWHw6_uPkcZk7TeLW-yii47Q9pT7_yFIY8DSYnDl6dVsfvG-fArjQ3mfgbgJjoYy9JjIDjkbH6icszJRZzfhMYzb3aM3LqMYl6uONjS8KV552w108iceF58_XM8vP07vZje3lxd3Uyc0r6fkVYtQKZTKowTpOFjNrFKS-5rAa-tl610tJDJWNS0o31aqqkBaZA2vxXFxu9d10S7MKoWlTVsTbTC_GzF9MTblyToyXFPtlIQKLJOc1a2owEtEZKjbBiBrne61Vil-XdMwmmUYkLouryyuB8ObfK9iTPCMvvsHXcR16vOkRoBWNdey1plq9tRT6Gh7-B0Ds3Pb7Nw2B7fN7NP1_aESz_Hhoig</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Kerpa, Svenja</creator><creator>Schulze, Verena R.</creator><creator>Holzapfel, Malte</creator><creator>Cvancar, Lina</creator><creator>Fischer, Markus</creator><creator>Maison, Wolfgang</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley-VCH</general><scope>24P</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7243-4199</orcidid><orcidid>https://orcid.org/0000-0003-2793-5722</orcidid><orcidid>https://orcid.org/0000-0003-1533-708X</orcidid><orcidid>https://orcid.org/0009-0005-8373-8776</orcidid></search><sort><creationdate>202407</creationdate><title>Decoration of 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid (DOTA) with N‐oxides increases the T1 relaxivity of Gd‐complexes</title><author>Kerpa, Svenja ; Schulze, Verena R. ; Holzapfel, Malte ; Cvancar, Lina ; Fischer, Markus ; Maison, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d3728-ef6bc056c46fc404d20a71a6642f8e0f7af4bfd834c1159b06fb565504ac19283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aqueous solutions</topic><topic>Contrast agents</topic><topic>Cu-catalyzed azide alkyne cycloaddition (CuAAC)</topic><topic>Ethylenediaminetetraacetic acids</topic><topic>Gadolinium</topic><topic>Gadolinium based contrast agents</topic><topic>Geometry</topic><topic>Hydration</topic><topic>Magnetic resonance imaging</topic><topic>magnetic resonance imaging (MRI)</topic><topic>Molecular weight</topic><topic>N-oxides</topic><topic>Nitrogen oxides</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Oxidation</topic><topic>T1 relaxivity</topic><topic>Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)</topic><topic>Toxicity</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kerpa, Svenja</creatorcontrib><creatorcontrib>Schulze, Verena R.</creatorcontrib><creatorcontrib>Holzapfel, Malte</creatorcontrib><creatorcontrib>Cvancar, Lina</creatorcontrib><creatorcontrib>Fischer, Markus</creatorcontrib><creatorcontrib>Maison, Wolfgang</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Directory of Open Access Journals</collection><jtitle>ChemistryOpen (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kerpa, Svenja</au><au>Schulze, Verena R.</au><au>Holzapfel, Malte</au><au>Cvancar, Lina</au><au>Fischer, Markus</au><au>Maison, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decoration of 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid (DOTA) with N‐oxides increases the T1 relaxivity of Gd‐complexes</atitle><jtitle>ChemistryOpen (Weinheim)</jtitle><date>2024-07</date><risdate>2024</risdate><volume>13</volume><issue>7</issue><spage>e202300298</spage><epage>n/a</epage><pages>e202300298-n/a</pages><issn>2191-1363</issn><eissn>2191-1363</eissn><abstract>High complex stability and longitudinal relaxivity of Gd‐based contrast agents are important requirements for magnetic resonance imaging (MRI) because they ensure patient safety and contribute to measurement sensitivity. Charged and zwitterionic Gd3+‐complexes of the well‐known chelator 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid (DOTA) provide an excellent basis for the development of safe and sensitive contrast agents. In this report, we describe the synthesis of DOTA‐NOx, a DOTA derivative with four N‐oxide functionalities via “click” functionalization of the tetraazide DOTAZA. The resulting complexes Gd‐DOTA‐NOx and Eu‐DOTA‐NOx are stable compounds in aqueous solution. NMR‐spectroscopic characterization revealed a high excess of the twisted square antiprismatic (TSAP) coordination geometry over square antiprismatic (SAP). The longitudinal relaxivity of Gd‐DOTA‐NOx was found to be r1=7.7 mm−1 s−1 (1.41 T, 37 °C), an unusually high value for DOTA complexes of comparable weight. We attribute this high relaxivity to the steric influence and an ordering effect on outer sphere water molecules surrounding the complex generated by the strongly hydrated N‐oxide groups. Moreover, Gd‐DOTA‐NOx was found to be stable against transchelation with high excess of EDTA (200 eq) over a period of 36 h, and it has a similar in vitro cell toxicity as clinically used DOTA‐based GBCAs. Decoration with N‐oxide groups is a valuable method to increase the T1‐relaxivity of the well‐known cyclic Gd‐chelator DOTA. The synthesis of Gd‐DOTA‐NOx has been achieved via copper catalyzed alkyne azide cycloaddition. The complex is water soluble, stable against transchelation, has a twisted square antiprismatic (TSAP) complex geometry and a high T1‐relaxivity of 7.7 mm−1 s−1 (1.41 T, 37 °C).</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/open.202300298</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7243-4199</orcidid><orcidid>https://orcid.org/0000-0003-2793-5722</orcidid><orcidid>https://orcid.org/0000-0003-1533-708X</orcidid><orcidid>https://orcid.org/0009-0005-8373-8776</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2191-1363
ispartof ChemistryOpen (Weinheim), 2024-07, Vol.13 (7), p.e202300298-n/a
issn 2191-1363
2191-1363
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_27e8d64050a14218b350f4ccc1c7b900
source Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry
subjects Aqueous solutions
Contrast agents
Cu-catalyzed azide alkyne cycloaddition (CuAAC)
Ethylenediaminetetraacetic acids
Gadolinium
Gadolinium based contrast agents
Geometry
Hydration
Magnetic resonance imaging
magnetic resonance imaging (MRI)
Molecular weight
N-oxides
Nitrogen oxides
NMR
Nuclear magnetic resonance
Oxidation
T1 relaxivity
Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)
Toxicity
Water
title Decoration of 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid (DOTA) with N‐oxides increases the T1 relaxivity of Gd‐complexes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decoration%20of%201,4,7,10%E2%80%90tetraazacyclododecane%E2%80%901,4,7,10%E2%80%90tetraacetic%20acid%20(DOTA)%20with%20N%E2%80%90oxides%20increases%20the%20T1%20relaxivity%20of%20Gd%E2%80%90complexes&rft.jtitle=ChemistryOpen%20(Weinheim)&rft.au=Kerpa,%20Svenja&rft.date=2024-07&rft.volume=13&rft.issue=7&rft.spage=e202300298&rft.epage=n/a&rft.pages=e202300298-n/a&rft.issn=2191-1363&rft.eissn=2191-1363&rft_id=info:doi/10.1002/open.202300298&rft_dat=%3Cproquest_doaj_%3E3076827487%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d3728-ef6bc056c46fc404d20a71a6642f8e0f7af4bfd834c1159b06fb565504ac19283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3076827487&rft_id=info:pmid/&rfr_iscdi=true