Loading…

Systemic screening of Fusarium oxysporum candidate effectors reveals FoSSP17 that suppresses plant immunity and contributes to virulence

Fusarium oxysporum f. sp. cubense ( Foc ) causes Fusarium wilt of banana ( Musa spp.), a notorious soil-borne vascular fungal disease threatening the global banana industry. Phytopathogens secrete effectors to suppress plant immunity. However, little is known about the effectors of Foc race 4 ( Foc4...

Full description

Saved in:
Bibliographic Details
Published in:Phytopathology research 2023-09, Vol.5 (1), p.1-16, Article 42
Main Authors: Wang, Tian, Xu, Yun, Zhao, Yang, Liang, Xiaofei, Liu, Shuang, Zhang, Yufang, Kang, Zhensheng, Chen, Daipeng, Zheng, Li
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fusarium oxysporum f. sp. cubense ( Foc ) causes Fusarium wilt of banana ( Musa spp.), a notorious soil-borne vascular fungal disease threatening the global banana industry. Phytopathogens secrete effectors to suppress plant immunity. However, little is known about the effectors of Foc race 4 ( Foc4 ). In this study, we built a streamlined screening system (candidate effector prediction, RNA-seq-based expression level analysis, and cell death manipulative activity assessment based on transient expression in Nicotiana benthamiana ) to identify candidate virulence-related effectors. In total, 80 candidate effector genes (CEGs) differentially expressed during plant colonization were predicted; 12 out of 15 characterized CEGs, including FoSSP17 , could suppress BAX-triggered programmed cell death (PCD) in N. benthamiana and were induced during the infection of plants. FoSSP17 encodes a novel protein conserved in the Fusarium genus. FoSSP17 gene deletion mutants were not affected in vegetative growth and conidiation but showed reduced virulence. Furthermore, the deletion mutants triggered higher expression levels of host defense-related genes including PR1, PR3, PR5 , and PR10 . Signal peptide activity assay and subcellular localization assay suggested that FoSSP17 is a conventional secretory protein that exerts cell-death-suppressive activity inside plant cells. In addition, FoSSP17 suppressed pattern-triggered immunity in plants by inhibiting reactive oxygen species (ROS) accumulation, reducing callose deposition, and suppressing the expression of NbLOX and NbERF1 genes related to jasmonic acid (JA)-pathway and ethylene (ET)-pathway, respectively. Overall, a systemic screening of Foc4 candidate effectors reveals that FoSSP17 contributes to the virulence of Foc4 and suppresses pattern-triggered immunity in plants.
ISSN:2524-4167
2524-4167
DOI:10.1186/s42483-023-00198-6