Loading…
A numerical modelling investigation of the role of diabatic heating and cooling in the development of a mid-level vortex prior to tropical cyclogenesis – Part 1: The response to stratiform components of diabatic forcing
Mid-tropospheric mesoscale convective vortices have been often observed to precede tropical cyclogenesis. Moreover, recent cloud-resolving numerical modelling studies that are initialized with a weak cyclonic mid-tropospheric vortex sometimes show a considerable intensification of the mid-level circ...
Saved in:
Published in: | Atmospheric chemistry and physics 2018-10, Vol.18 (19), p.14393-14416 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c483t-b97acb8934a5f5d6791dc29b9d71bca606e32b65f692c82bb4d68523969d13593 |
---|---|
cites | cdi_FETCH-LOGICAL-c483t-b97acb8934a5f5d6791dc29b9d71bca606e32b65f692c82bb4d68523969d13593 |
container_end_page | 14416 |
container_issue | 19 |
container_start_page | 14393 |
container_title | Atmospheric chemistry and physics |
container_volume | 18 |
creator | Nicholls, Melville E Pielke Sr., Roger A Wheeler, Donavan Carrio, Gustavo Smith, Warren P |
description | Mid-tropospheric mesoscale convective vortices have been often observed to precede tropical cyclogenesis. Moreover, recent cloud-resolving numerical modelling studies that are initialized with a weak cyclonic mid-tropospheric vortex sometimes show a considerable intensification of the mid-level circulation prior to the development of the strong cyclonic surface winds that characterize tropical cyclogenesis. The objective of this two-part study is to determine the processes that lead to the development of a prominent mid-level vortex during a simulation of the transformation of a tropical disturbance into a tropical depression, in particular the role of diabatic heating and cooling. For simplicity simulations are initialized from a quiescent environment. In this first part, results of the numerical simulation are described and the response to stratiform components of the diabatic forcing is investigated. In the second part, the contribution of diabatic heating in convective cells to the development of the mid-level vortex is examined. |
doi_str_mv | 10.5194/acp-18-14393-2018 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2815a79b6fc0493eb9056b4fc377a9aa</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A557525527</galeid><doaj_id>oai_doaj_org_article_2815a79b6fc0493eb9056b4fc377a9aa</doaj_id><sourcerecordid>A557525527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-b97acb8934a5f5d6791dc29b9d71bca606e32b65f692c82bb4d68523969d13593</originalsourceid><addsrcrecordid>eNptUsmO1DAQjRBIDAMfwM0SJw4Z4i2JuY1GLC2NBILhbHlLxq3EDra7xdz4B76PC19CpXsEtIR8KKvqvXq1VdVz3FxwLNgrZZYa9zVmVNCaNLh_UJ3htm_qjhL28J__4-pJztumIbzB7Kz6eYnCbnbJGzWhOVo3TT6MyIe9y8WPqvgYUBxQuXUoxcmtf-uVhoBBtw4MoFWwyMR4zzxgrdu7KS6zC2WlKDR7W0-rE-1jKu4bWpKPCZWISorLQd7cmSmOLrjsM_r1_Qf6qFJB-DW6WcVdXmLIbmXkkkB4iGkG2RncoJJPKoOYgWqeVo8GNWX37N6eV1_evrm5el9ff3i3ubq8rg3raam16JTRvaBM8YHbthPYGiK0sB3WRrVN6yjRLR9aQUxPtGa27TmhohUWUy7oebU55rVRbSV0Nqt0J6Py8uCIaZTQijeTk6THXHVCt4NpmKBOi4a3mg2Gdp0SSkGuF8dcS4pfd7AFuY27FKB8STDuMCGEsb-oUUFSH4YIMzGzz0Zect5xwjnpAHXxHxQ862ZvYG6DB_8J4eUJATCwqzKqXc5y8_nTKRYfsSbFnJMb_jSOG7kepYSjlLiXh6OU61HS37H32BY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117122244</pqid></control><display><type>article</type><title>A numerical modelling investigation of the role of diabatic heating and cooling in the development of a mid-level vortex prior to tropical cyclogenesis – Part 1: The response to stratiform components of diabatic forcing</title><source>Publicly Available Content Database</source><source>Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><creator>Nicholls, Melville E ; Pielke Sr., Roger A ; Wheeler, Donavan ; Carrio, Gustavo ; Smith, Warren P</creator><creatorcontrib>Nicholls, Melville E ; Pielke Sr., Roger A ; Wheeler, Donavan ; Carrio, Gustavo ; Smith, Warren P</creatorcontrib><description>Mid-tropospheric mesoscale convective vortices have been often observed to precede tropical cyclogenesis. Moreover, recent cloud-resolving numerical modelling studies that are initialized with a weak cyclonic mid-tropospheric vortex sometimes show a considerable intensification of the mid-level circulation prior to the development of the strong cyclonic surface winds that characterize tropical cyclogenesis. The objective of this two-part study is to determine the processes that lead to the development of a prominent mid-level vortex during a simulation of the transformation of a tropical disturbance into a tropical depression, in particular the role of diabatic heating and cooling. For simplicity simulations are initialized from a quiescent environment. In this first part, results of the numerical simulation are described and the response to stratiform components of the diabatic forcing is investigated. In the second part, the contribution of diabatic heating in convective cells to the development of the mid-level vortex is examined.</description><identifier>ISSN: 1680-7324</identifier><identifier>ISSN: 1680-7316</identifier><identifier>EISSN: 1680-7324</identifier><identifier>DOI: 10.5194/acp-18-14393-2018</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Adiabatic ; Amplification ; Angular momentum ; Anvils ; Ascent ; Cells ; Components ; Computer simulation ; Conservation ; Conservation of angular momentum ; Convective activity ; Convective cells ; Convective vortices ; Cooling ; Cyclogenesis ; Cyclones ; Diabatic cooling ; Diabatic heating ; Evaporation ; Heating ; Heating and cooling ; Hydrometeors ; Ice environments ; Inflow ; Mathematical models ; Melting ; Mesoscale convective vortices ; Mesoscale vortexes ; Microphysics ; Modelling ; Momentum ; Numerical simulations ; Ocean circulation ; Physics ; Removal ; Simulation ; Sublimation ; Surface wind ; Thermodynamic processes ; Tropical climate ; Tropical cyclogenesis ; Tropical cyclones ; Tropical depressions ; Troposphere ; Upper troposphere ; Vortex motion ; Vortices ; Winds</subject><ispartof>Atmospheric chemistry and physics, 2018-10, Vol.18 (19), p.14393-14416</ispartof><rights>COPYRIGHT 2018 Copernicus GmbH</rights><rights>2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-b97acb8934a5f5d6791dc29b9d71bca606e32b65f692c82bb4d68523969d13593</citedby><cites>FETCH-LOGICAL-c483t-b97acb8934a5f5d6791dc29b9d71bca606e32b65f692c82bb4d68523969d13593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2117122244/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2117122244?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,25744,27915,27916,37003,44581,74887</link.rule.ids></links><search><creatorcontrib>Nicholls, Melville E</creatorcontrib><creatorcontrib>Pielke Sr., Roger A</creatorcontrib><creatorcontrib>Wheeler, Donavan</creatorcontrib><creatorcontrib>Carrio, Gustavo</creatorcontrib><creatorcontrib>Smith, Warren P</creatorcontrib><title>A numerical modelling investigation of the role of diabatic heating and cooling in the development of a mid-level vortex prior to tropical cyclogenesis – Part 1: The response to stratiform components of diabatic forcing</title><title>Atmospheric chemistry and physics</title><description>Mid-tropospheric mesoscale convective vortices have been often observed to precede tropical cyclogenesis. Moreover, recent cloud-resolving numerical modelling studies that are initialized with a weak cyclonic mid-tropospheric vortex sometimes show a considerable intensification of the mid-level circulation prior to the development of the strong cyclonic surface winds that characterize tropical cyclogenesis. The objective of this two-part study is to determine the processes that lead to the development of a prominent mid-level vortex during a simulation of the transformation of a tropical disturbance into a tropical depression, in particular the role of diabatic heating and cooling. For simplicity simulations are initialized from a quiescent environment. In this first part, results of the numerical simulation are described and the response to stratiform components of the diabatic forcing is investigated. In the second part, the contribution of diabatic heating in convective cells to the development of the mid-level vortex is examined.</description><subject>Adiabatic</subject><subject>Amplification</subject><subject>Angular momentum</subject><subject>Anvils</subject><subject>Ascent</subject><subject>Cells</subject><subject>Components</subject><subject>Computer simulation</subject><subject>Conservation</subject><subject>Conservation of angular momentum</subject><subject>Convective activity</subject><subject>Convective cells</subject><subject>Convective vortices</subject><subject>Cooling</subject><subject>Cyclogenesis</subject><subject>Cyclones</subject><subject>Diabatic cooling</subject><subject>Diabatic heating</subject><subject>Evaporation</subject><subject>Heating</subject><subject>Heating and cooling</subject><subject>Hydrometeors</subject><subject>Ice environments</subject><subject>Inflow</subject><subject>Mathematical models</subject><subject>Melting</subject><subject>Mesoscale convective vortices</subject><subject>Mesoscale vortexes</subject><subject>Microphysics</subject><subject>Modelling</subject><subject>Momentum</subject><subject>Numerical simulations</subject><subject>Ocean circulation</subject><subject>Physics</subject><subject>Removal</subject><subject>Simulation</subject><subject>Sublimation</subject><subject>Surface wind</subject><subject>Thermodynamic processes</subject><subject>Tropical climate</subject><subject>Tropical cyclogenesis</subject><subject>Tropical cyclones</subject><subject>Tropical depressions</subject><subject>Troposphere</subject><subject>Upper troposphere</subject><subject>Vortex motion</subject><subject>Vortices</subject><subject>Winds</subject><issn>1680-7324</issn><issn>1680-7316</issn><issn>1680-7324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUsmO1DAQjRBIDAMfwM0SJw4Z4i2JuY1GLC2NBILhbHlLxq3EDra7xdz4B76PC19CpXsEtIR8KKvqvXq1VdVz3FxwLNgrZZYa9zVmVNCaNLh_UJ3htm_qjhL28J__4-pJztumIbzB7Kz6eYnCbnbJGzWhOVo3TT6MyIe9y8WPqvgYUBxQuXUoxcmtf-uVhoBBtw4MoFWwyMR4zzxgrdu7KS6zC2WlKDR7W0-rE-1jKu4bWpKPCZWISorLQd7cmSmOLrjsM_r1_Qf6qFJB-DW6WcVdXmLIbmXkkkB4iGkG2RncoJJPKoOYgWqeVo8GNWX37N6eV1_evrm5el9ff3i3ubq8rg3raam16JTRvaBM8YHbthPYGiK0sB3WRrVN6yjRLR9aQUxPtGa27TmhohUWUy7oebU55rVRbSV0Nqt0J6Py8uCIaZTQijeTk6THXHVCt4NpmKBOi4a3mg2Gdp0SSkGuF8dcS4pfd7AFuY27FKB8STDuMCGEsb-oUUFSH4YIMzGzz0Zect5xwjnpAHXxHxQ862ZvYG6DB_8J4eUJATCwqzKqXc5y8_nTKRYfsSbFnJMb_jSOG7kepYSjlLiXh6OU61HS37H32BY</recordid><startdate>20181009</startdate><enddate>20181009</enddate><creator>Nicholls, Melville E</creator><creator>Pielke Sr., Roger A</creator><creator>Wheeler, Donavan</creator><creator>Carrio, Gustavo</creator><creator>Smith, Warren P</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>DOA</scope></search><sort><creationdate>20181009</creationdate><title>A numerical modelling investigation of the role of diabatic heating and cooling in the development of a mid-level vortex prior to tropical cyclogenesis – Part 1: The response to stratiform components of diabatic forcing</title><author>Nicholls, Melville E ; Pielke Sr., Roger A ; Wheeler, Donavan ; Carrio, Gustavo ; Smith, Warren P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-b97acb8934a5f5d6791dc29b9d71bca606e32b65f692c82bb4d68523969d13593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adiabatic</topic><topic>Amplification</topic><topic>Angular momentum</topic><topic>Anvils</topic><topic>Ascent</topic><topic>Cells</topic><topic>Components</topic><topic>Computer simulation</topic><topic>Conservation</topic><topic>Conservation of angular momentum</topic><topic>Convective activity</topic><topic>Convective cells</topic><topic>Convective vortices</topic><topic>Cooling</topic><topic>Cyclogenesis</topic><topic>Cyclones</topic><topic>Diabatic cooling</topic><topic>Diabatic heating</topic><topic>Evaporation</topic><topic>Heating</topic><topic>Heating and cooling</topic><topic>Hydrometeors</topic><topic>Ice environments</topic><topic>Inflow</topic><topic>Mathematical models</topic><topic>Melting</topic><topic>Mesoscale convective vortices</topic><topic>Mesoscale vortexes</topic><topic>Microphysics</topic><topic>Modelling</topic><topic>Momentum</topic><topic>Numerical simulations</topic><topic>Ocean circulation</topic><topic>Physics</topic><topic>Removal</topic><topic>Simulation</topic><topic>Sublimation</topic><topic>Surface wind</topic><topic>Thermodynamic processes</topic><topic>Tropical climate</topic><topic>Tropical cyclogenesis</topic><topic>Tropical cyclones</topic><topic>Tropical depressions</topic><topic>Troposphere</topic><topic>Upper troposphere</topic><topic>Vortex motion</topic><topic>Vortices</topic><topic>Winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nicholls, Melville E</creatorcontrib><creatorcontrib>Pielke Sr., Roger A</creatorcontrib><creatorcontrib>Wheeler, Donavan</creatorcontrib><creatorcontrib>Carrio, Gustavo</creatorcontrib><creatorcontrib>Smith, Warren P</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Atmospheric chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nicholls, Melville E</au><au>Pielke Sr., Roger A</au><au>Wheeler, Donavan</au><au>Carrio, Gustavo</au><au>Smith, Warren P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical modelling investigation of the role of diabatic heating and cooling in the development of a mid-level vortex prior to tropical cyclogenesis – Part 1: The response to stratiform components of diabatic forcing</atitle><jtitle>Atmospheric chemistry and physics</jtitle><date>2018-10-09</date><risdate>2018</risdate><volume>18</volume><issue>19</issue><spage>14393</spage><epage>14416</epage><pages>14393-14416</pages><issn>1680-7324</issn><issn>1680-7316</issn><eissn>1680-7324</eissn><abstract>Mid-tropospheric mesoscale convective vortices have been often observed to precede tropical cyclogenesis. Moreover, recent cloud-resolving numerical modelling studies that are initialized with a weak cyclonic mid-tropospheric vortex sometimes show a considerable intensification of the mid-level circulation prior to the development of the strong cyclonic surface winds that characterize tropical cyclogenesis. The objective of this two-part study is to determine the processes that lead to the development of a prominent mid-level vortex during a simulation of the transformation of a tropical disturbance into a tropical depression, in particular the role of diabatic heating and cooling. For simplicity simulations are initialized from a quiescent environment. In this first part, results of the numerical simulation are described and the response to stratiform components of the diabatic forcing is investigated. In the second part, the contribution of diabatic heating in convective cells to the development of the mid-level vortex is examined.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/acp-18-14393-2018</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1680-7324 |
ispartof | Atmospheric chemistry and physics, 2018-10, Vol.18 (19), p.14393-14416 |
issn | 1680-7324 1680-7316 1680-7324 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2815a79b6fc0493eb9056b4fc377a9aa |
source | Publicly Available Content Database; Directory of Open Access Journals; Alma/SFX Local Collection |
subjects | Adiabatic Amplification Angular momentum Anvils Ascent Cells Components Computer simulation Conservation Conservation of angular momentum Convective activity Convective cells Convective vortices Cooling Cyclogenesis Cyclones Diabatic cooling Diabatic heating Evaporation Heating Heating and cooling Hydrometeors Ice environments Inflow Mathematical models Melting Mesoscale convective vortices Mesoscale vortexes Microphysics Modelling Momentum Numerical simulations Ocean circulation Physics Removal Simulation Sublimation Surface wind Thermodynamic processes Tropical climate Tropical cyclogenesis Tropical cyclones Tropical depressions Troposphere Upper troposphere Vortex motion Vortices Winds |
title | A numerical modelling investigation of the role of diabatic heating and cooling in the development of a mid-level vortex prior to tropical cyclogenesis – Part 1: The response to stratiform components of diabatic forcing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A16%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20modelling%20investigation%20of%20the%20role%20of%20diabatic%20heating%20and%20cooling%20in%20the%20development%20of%20a%20mid-level%20vortex%20prior%20to%20tropical%20cyclogenesis%20%E2%80%93%20Part%201:%20The%20response%20to%20stratiform%20components%20of%20diabatic%20forcing&rft.jtitle=Atmospheric%20chemistry%20and%20physics&rft.au=Nicholls,%20Melville%20E&rft.date=2018-10-09&rft.volume=18&rft.issue=19&rft.spage=14393&rft.epage=14416&rft.pages=14393-14416&rft.issn=1680-7324&rft.eissn=1680-7324&rft_id=info:doi/10.5194/acp-18-14393-2018&rft_dat=%3Cgale_doaj_%3EA557525527%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c483t-b97acb8934a5f5d6791dc29b9d71bca606e32b65f692c82bb4d68523969d13593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117122244&rft_id=info:pmid/&rft_galeid=A557525527&rfr_iscdi=true |