Loading…

A numerical modelling investigation of the role of diabatic heating and cooling in the development of a mid-level vortex prior to tropical cyclogenesis – Part 1: The response to stratiform components of diabatic forcing

Mid-tropospheric mesoscale convective vortices have been often observed to precede tropical cyclogenesis. Moreover, recent cloud-resolving numerical modelling studies that are initialized with a weak cyclonic mid-tropospheric vortex sometimes show a considerable intensification of the mid-level circ...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric chemistry and physics 2018-10, Vol.18 (19), p.14393-14416
Main Authors: Nicholls, Melville E, Pielke Sr., Roger A, Wheeler, Donavan, Carrio, Gustavo, Smith, Warren P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c483t-b97acb8934a5f5d6791dc29b9d71bca606e32b65f692c82bb4d68523969d13593
cites cdi_FETCH-LOGICAL-c483t-b97acb8934a5f5d6791dc29b9d71bca606e32b65f692c82bb4d68523969d13593
container_end_page 14416
container_issue 19
container_start_page 14393
container_title Atmospheric chemistry and physics
container_volume 18
creator Nicholls, Melville E
Pielke Sr., Roger A
Wheeler, Donavan
Carrio, Gustavo
Smith, Warren P
description Mid-tropospheric mesoscale convective vortices have been often observed to precede tropical cyclogenesis. Moreover, recent cloud-resolving numerical modelling studies that are initialized with a weak cyclonic mid-tropospheric vortex sometimes show a considerable intensification of the mid-level circulation prior to the development of the strong cyclonic surface winds that characterize tropical cyclogenesis. The objective of this two-part study is to determine the processes that lead to the development of a prominent mid-level vortex during a simulation of the transformation of a tropical disturbance into a tropical depression, in particular the role of diabatic heating and cooling. For simplicity simulations are initialized from a quiescent environment. In this first part, results of the numerical simulation are described and the response to stratiform components of the diabatic forcing is investigated. In the second part, the contribution of diabatic heating in convective cells to the development of the mid-level vortex is examined.
doi_str_mv 10.5194/acp-18-14393-2018
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2815a79b6fc0493eb9056b4fc377a9aa</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A557525527</galeid><doaj_id>oai_doaj_org_article_2815a79b6fc0493eb9056b4fc377a9aa</doaj_id><sourcerecordid>A557525527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-b97acb8934a5f5d6791dc29b9d71bca606e32b65f692c82bb4d68523969d13593</originalsourceid><addsrcrecordid>eNptUsmO1DAQjRBIDAMfwM0SJw4Z4i2JuY1GLC2NBILhbHlLxq3EDra7xdz4B76PC19CpXsEtIR8KKvqvXq1VdVz3FxwLNgrZZYa9zVmVNCaNLh_UJ3htm_qjhL28J__4-pJztumIbzB7Kz6eYnCbnbJGzWhOVo3TT6MyIe9y8WPqvgYUBxQuXUoxcmtf-uVhoBBtw4MoFWwyMR4zzxgrdu7KS6zC2WlKDR7W0-rE-1jKu4bWpKPCZWISorLQd7cmSmOLrjsM_r1_Qf6qFJB-DW6WcVdXmLIbmXkkkB4iGkG2RncoJJPKoOYgWqeVo8GNWX37N6eV1_evrm5el9ff3i3ubq8rg3raam16JTRvaBM8YHbthPYGiK0sB3WRrVN6yjRLR9aQUxPtGa27TmhohUWUy7oebU55rVRbSV0Nqt0J6Py8uCIaZTQijeTk6THXHVCt4NpmKBOi4a3mg2Gdp0SSkGuF8dcS4pfd7AFuY27FKB8STDuMCGEsb-oUUFSH4YIMzGzz0Zect5xwjnpAHXxHxQ862ZvYG6DB_8J4eUJATCwqzKqXc5y8_nTKRYfsSbFnJMb_jSOG7kepYSjlLiXh6OU61HS37H32BY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117122244</pqid></control><display><type>article</type><title>A numerical modelling investigation of the role of diabatic heating and cooling in the development of a mid-level vortex prior to tropical cyclogenesis – Part 1: The response to stratiform components of diabatic forcing</title><source>Publicly Available Content Database</source><source>Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><creator>Nicholls, Melville E ; Pielke Sr., Roger A ; Wheeler, Donavan ; Carrio, Gustavo ; Smith, Warren P</creator><creatorcontrib>Nicholls, Melville E ; Pielke Sr., Roger A ; Wheeler, Donavan ; Carrio, Gustavo ; Smith, Warren P</creatorcontrib><description>Mid-tropospheric mesoscale convective vortices have been often observed to precede tropical cyclogenesis. Moreover, recent cloud-resolving numerical modelling studies that are initialized with a weak cyclonic mid-tropospheric vortex sometimes show a considerable intensification of the mid-level circulation prior to the development of the strong cyclonic surface winds that characterize tropical cyclogenesis. The objective of this two-part study is to determine the processes that lead to the development of a prominent mid-level vortex during a simulation of the transformation of a tropical disturbance into a tropical depression, in particular the role of diabatic heating and cooling. For simplicity simulations are initialized from a quiescent environment. In this first part, results of the numerical simulation are described and the response to stratiform components of the diabatic forcing is investigated. In the second part, the contribution of diabatic heating in convective cells to the development of the mid-level vortex is examined.</description><identifier>ISSN: 1680-7324</identifier><identifier>ISSN: 1680-7316</identifier><identifier>EISSN: 1680-7324</identifier><identifier>DOI: 10.5194/acp-18-14393-2018</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Adiabatic ; Amplification ; Angular momentum ; Anvils ; Ascent ; Cells ; Components ; Computer simulation ; Conservation ; Conservation of angular momentum ; Convective activity ; Convective cells ; Convective vortices ; Cooling ; Cyclogenesis ; Cyclones ; Diabatic cooling ; Diabatic heating ; Evaporation ; Heating ; Heating and cooling ; Hydrometeors ; Ice environments ; Inflow ; Mathematical models ; Melting ; Mesoscale convective vortices ; Mesoscale vortexes ; Microphysics ; Modelling ; Momentum ; Numerical simulations ; Ocean circulation ; Physics ; Removal ; Simulation ; Sublimation ; Surface wind ; Thermodynamic processes ; Tropical climate ; Tropical cyclogenesis ; Tropical cyclones ; Tropical depressions ; Troposphere ; Upper troposphere ; Vortex motion ; Vortices ; Winds</subject><ispartof>Atmospheric chemistry and physics, 2018-10, Vol.18 (19), p.14393-14416</ispartof><rights>COPYRIGHT 2018 Copernicus GmbH</rights><rights>2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-b97acb8934a5f5d6791dc29b9d71bca606e32b65f692c82bb4d68523969d13593</citedby><cites>FETCH-LOGICAL-c483t-b97acb8934a5f5d6791dc29b9d71bca606e32b65f692c82bb4d68523969d13593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2117122244/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2117122244?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,25744,27915,27916,37003,44581,74887</link.rule.ids></links><search><creatorcontrib>Nicholls, Melville E</creatorcontrib><creatorcontrib>Pielke Sr., Roger A</creatorcontrib><creatorcontrib>Wheeler, Donavan</creatorcontrib><creatorcontrib>Carrio, Gustavo</creatorcontrib><creatorcontrib>Smith, Warren P</creatorcontrib><title>A numerical modelling investigation of the role of diabatic heating and cooling in the development of a mid-level vortex prior to tropical cyclogenesis – Part 1: The response to stratiform components of diabatic forcing</title><title>Atmospheric chemistry and physics</title><description>Mid-tropospheric mesoscale convective vortices have been often observed to precede tropical cyclogenesis. Moreover, recent cloud-resolving numerical modelling studies that are initialized with a weak cyclonic mid-tropospheric vortex sometimes show a considerable intensification of the mid-level circulation prior to the development of the strong cyclonic surface winds that characterize tropical cyclogenesis. The objective of this two-part study is to determine the processes that lead to the development of a prominent mid-level vortex during a simulation of the transformation of a tropical disturbance into a tropical depression, in particular the role of diabatic heating and cooling. For simplicity simulations are initialized from a quiescent environment. In this first part, results of the numerical simulation are described and the response to stratiform components of the diabatic forcing is investigated. In the second part, the contribution of diabatic heating in convective cells to the development of the mid-level vortex is examined.</description><subject>Adiabatic</subject><subject>Amplification</subject><subject>Angular momentum</subject><subject>Anvils</subject><subject>Ascent</subject><subject>Cells</subject><subject>Components</subject><subject>Computer simulation</subject><subject>Conservation</subject><subject>Conservation of angular momentum</subject><subject>Convective activity</subject><subject>Convective cells</subject><subject>Convective vortices</subject><subject>Cooling</subject><subject>Cyclogenesis</subject><subject>Cyclones</subject><subject>Diabatic cooling</subject><subject>Diabatic heating</subject><subject>Evaporation</subject><subject>Heating</subject><subject>Heating and cooling</subject><subject>Hydrometeors</subject><subject>Ice environments</subject><subject>Inflow</subject><subject>Mathematical models</subject><subject>Melting</subject><subject>Mesoscale convective vortices</subject><subject>Mesoscale vortexes</subject><subject>Microphysics</subject><subject>Modelling</subject><subject>Momentum</subject><subject>Numerical simulations</subject><subject>Ocean circulation</subject><subject>Physics</subject><subject>Removal</subject><subject>Simulation</subject><subject>Sublimation</subject><subject>Surface wind</subject><subject>Thermodynamic processes</subject><subject>Tropical climate</subject><subject>Tropical cyclogenesis</subject><subject>Tropical cyclones</subject><subject>Tropical depressions</subject><subject>Troposphere</subject><subject>Upper troposphere</subject><subject>Vortex motion</subject><subject>Vortices</subject><subject>Winds</subject><issn>1680-7324</issn><issn>1680-7316</issn><issn>1680-7324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUsmO1DAQjRBIDAMfwM0SJw4Z4i2JuY1GLC2NBILhbHlLxq3EDra7xdz4B76PC19CpXsEtIR8KKvqvXq1VdVz3FxwLNgrZZYa9zVmVNCaNLh_UJ3htm_qjhL28J__4-pJztumIbzB7Kz6eYnCbnbJGzWhOVo3TT6MyIe9y8WPqvgYUBxQuXUoxcmtf-uVhoBBtw4MoFWwyMR4zzxgrdu7KS6zC2WlKDR7W0-rE-1jKu4bWpKPCZWISorLQd7cmSmOLrjsM_r1_Qf6qFJB-DW6WcVdXmLIbmXkkkB4iGkG2RncoJJPKoOYgWqeVo8GNWX37N6eV1_evrm5el9ff3i3ubq8rg3raam16JTRvaBM8YHbthPYGiK0sB3WRrVN6yjRLR9aQUxPtGa27TmhohUWUy7oebU55rVRbSV0Nqt0J6Py8uCIaZTQijeTk6THXHVCt4NpmKBOi4a3mg2Gdp0SSkGuF8dcS4pfd7AFuY27FKB8STDuMCGEsb-oUUFSH4YIMzGzz0Zect5xwjnpAHXxHxQ862ZvYG6DB_8J4eUJATCwqzKqXc5y8_nTKRYfsSbFnJMb_jSOG7kepYSjlLiXh6OU61HS37H32BY</recordid><startdate>20181009</startdate><enddate>20181009</enddate><creator>Nicholls, Melville E</creator><creator>Pielke Sr., Roger A</creator><creator>Wheeler, Donavan</creator><creator>Carrio, Gustavo</creator><creator>Smith, Warren P</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>DOA</scope></search><sort><creationdate>20181009</creationdate><title>A numerical modelling investigation of the role of diabatic heating and cooling in the development of a mid-level vortex prior to tropical cyclogenesis – Part 1: The response to stratiform components of diabatic forcing</title><author>Nicholls, Melville E ; Pielke Sr., Roger A ; Wheeler, Donavan ; Carrio, Gustavo ; Smith, Warren P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-b97acb8934a5f5d6791dc29b9d71bca606e32b65f692c82bb4d68523969d13593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adiabatic</topic><topic>Amplification</topic><topic>Angular momentum</topic><topic>Anvils</topic><topic>Ascent</topic><topic>Cells</topic><topic>Components</topic><topic>Computer simulation</topic><topic>Conservation</topic><topic>Conservation of angular momentum</topic><topic>Convective activity</topic><topic>Convective cells</topic><topic>Convective vortices</topic><topic>Cooling</topic><topic>Cyclogenesis</topic><topic>Cyclones</topic><topic>Diabatic cooling</topic><topic>Diabatic heating</topic><topic>Evaporation</topic><topic>Heating</topic><topic>Heating and cooling</topic><topic>Hydrometeors</topic><topic>Ice environments</topic><topic>Inflow</topic><topic>Mathematical models</topic><topic>Melting</topic><topic>Mesoscale convective vortices</topic><topic>Mesoscale vortexes</topic><topic>Microphysics</topic><topic>Modelling</topic><topic>Momentum</topic><topic>Numerical simulations</topic><topic>Ocean circulation</topic><topic>Physics</topic><topic>Removal</topic><topic>Simulation</topic><topic>Sublimation</topic><topic>Surface wind</topic><topic>Thermodynamic processes</topic><topic>Tropical climate</topic><topic>Tropical cyclogenesis</topic><topic>Tropical cyclones</topic><topic>Tropical depressions</topic><topic>Troposphere</topic><topic>Upper troposphere</topic><topic>Vortex motion</topic><topic>Vortices</topic><topic>Winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nicholls, Melville E</creatorcontrib><creatorcontrib>Pielke Sr., Roger A</creatorcontrib><creatorcontrib>Wheeler, Donavan</creatorcontrib><creatorcontrib>Carrio, Gustavo</creatorcontrib><creatorcontrib>Smith, Warren P</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Atmospheric chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nicholls, Melville E</au><au>Pielke Sr., Roger A</au><au>Wheeler, Donavan</au><au>Carrio, Gustavo</au><au>Smith, Warren P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical modelling investigation of the role of diabatic heating and cooling in the development of a mid-level vortex prior to tropical cyclogenesis – Part 1: The response to stratiform components of diabatic forcing</atitle><jtitle>Atmospheric chemistry and physics</jtitle><date>2018-10-09</date><risdate>2018</risdate><volume>18</volume><issue>19</issue><spage>14393</spage><epage>14416</epage><pages>14393-14416</pages><issn>1680-7324</issn><issn>1680-7316</issn><eissn>1680-7324</eissn><abstract>Mid-tropospheric mesoscale convective vortices have been often observed to precede tropical cyclogenesis. Moreover, recent cloud-resolving numerical modelling studies that are initialized with a weak cyclonic mid-tropospheric vortex sometimes show a considerable intensification of the mid-level circulation prior to the development of the strong cyclonic surface winds that characterize tropical cyclogenesis. The objective of this two-part study is to determine the processes that lead to the development of a prominent mid-level vortex during a simulation of the transformation of a tropical disturbance into a tropical depression, in particular the role of diabatic heating and cooling. For simplicity simulations are initialized from a quiescent environment. In this first part, results of the numerical simulation are described and the response to stratiform components of the diabatic forcing is investigated. In the second part, the contribution of diabatic heating in convective cells to the development of the mid-level vortex is examined.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/acp-18-14393-2018</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1680-7324
ispartof Atmospheric chemistry and physics, 2018-10, Vol.18 (19), p.14393-14416
issn 1680-7324
1680-7316
1680-7324
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2815a79b6fc0493eb9056b4fc377a9aa
source Publicly Available Content Database; Directory of Open Access Journals; Alma/SFX Local Collection
subjects Adiabatic
Amplification
Angular momentum
Anvils
Ascent
Cells
Components
Computer simulation
Conservation
Conservation of angular momentum
Convective activity
Convective cells
Convective vortices
Cooling
Cyclogenesis
Cyclones
Diabatic cooling
Diabatic heating
Evaporation
Heating
Heating and cooling
Hydrometeors
Ice environments
Inflow
Mathematical models
Melting
Mesoscale convective vortices
Mesoscale vortexes
Microphysics
Modelling
Momentum
Numerical simulations
Ocean circulation
Physics
Removal
Simulation
Sublimation
Surface wind
Thermodynamic processes
Tropical climate
Tropical cyclogenesis
Tropical cyclones
Tropical depressions
Troposphere
Upper troposphere
Vortex motion
Vortices
Winds
title A numerical modelling investigation of the role of diabatic heating and cooling in the development of a mid-level vortex prior to tropical cyclogenesis – Part 1: The response to stratiform components of diabatic forcing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A16%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20modelling%20investigation%20of%20the%20role%20of%20diabatic%20heating%20and%20cooling%20in%20the%20development%20of%20a%20mid-level%20vortex%20prior%20to%20tropical%20cyclogenesis%20%E2%80%93%20Part%201:%20The%20response%20to%20stratiform%20components%20of%20diabatic%20forcing&rft.jtitle=Atmospheric%20chemistry%20and%20physics&rft.au=Nicholls,%20Melville%20E&rft.date=2018-10-09&rft.volume=18&rft.issue=19&rft.spage=14393&rft.epage=14416&rft.pages=14393-14416&rft.issn=1680-7324&rft.eissn=1680-7324&rft_id=info:doi/10.5194/acp-18-14393-2018&rft_dat=%3Cgale_doaj_%3EA557525527%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c483t-b97acb8934a5f5d6791dc29b9d71bca606e32b65f692c82bb4d68523969d13593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117122244&rft_id=info:pmid/&rft_galeid=A557525527&rfr_iscdi=true