Loading…

Hyperhomocysteinemic Alzheimer's mouse model of amyloidosis shows increased brain amyloid β peptide levels

Recent epidemiological and clinical data suggest that elevated serum homocysteine levels may increase the risk of developing Alzheimer's disease (AD), but the underlying mechanisms are unknown. We tested the hypothesis that high serum homocysteine concentration may increase amyloid beta-peptide...

Full description

Saved in:
Bibliographic Details
Published in:Neurobiology of disease 2006-06, Vol.22 (3), p.651-656
Main Authors: Pacheco-Quinto, Javier, Rodriguez de Turco, Elena B., DeRosa, Steven, Howard, Altovise, Cruz-Sanchez, Felix, Sambamurti, Kumar, Refolo, Lorenzo, Petanceska, Suzana, Pappolla, Miguel A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent epidemiological and clinical data suggest that elevated serum homocysteine levels may increase the risk of developing Alzheimer's disease (AD), but the underlying mechanisms are unknown. We tested the hypothesis that high serum homocysteine concentration may increase amyloid beta-peptide (Aβ) levels in the brain and could therefore accelerate AD neuropathology. For this purpose, we mated a hyperhomocysteinemic CBS tm1Unc mouse carrying a heterozygous dominant mutation in cystathionine-beta-synthase (CBS*) with the APP*/PS1* mouse model of brain amyloidosis. The APP*/PS1*/CBS* mice showed significant elevations of serum homocysteine levels compared to the double transgenic APP*/PS1* model of amyloidosis. Results showed that female (but not male) APP*/PS1*/CBS* mice exhibited significant elevations of Aβ40 and Aβ42 levels in the brain. Correlations between homocysteine levels in serum and brain Aβ levels were statistically significant. No increases in beta secretase activity or evidence of neuronal cell loss in the hyperhomocysteinemic mice were found. The causes of neuronal dysfunction and degeneration in AD are not fully understood, but increased production of Aβ seems to be of major importance. By unveiling a link between homocysteine and Aβ levels, these findings advance our understanding on the mechanisms involved in hyperhomocysteinemia as a risk factor for AD.
ISSN:0969-9961
1095-953X
DOI:10.1016/j.nbd.2006.01.005