Loading…
Time-resolved in vivo ubiquitinome profiling by DIA-MS reveals USP7 targets on a proteome-wide scale
Mass spectrometry (MS)-based ubiquitinomics provides system-level understanding of ubiquitin signaling. Here we present a scalable workflow for deep and precise in vivo ubiquitinome profiling, coupling an improved sample preparation protocol with data-independent acquisition (DIA)-MS and neural netw...
Saved in:
Published in: | Nature communications 2021-09, Vol.12 (1), p.5399-5399, Article 5399 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c583t-e08a33db3ff73a3dd6457621aa785e5c9e1a13c54dd63f5a8d968b264c673aa03 |
---|---|
cites | cdi_FETCH-LOGICAL-c583t-e08a33db3ff73a3dd6457621aa785e5c9e1a13c54dd63f5a8d968b264c673aa03 |
container_end_page | 5399 |
container_issue | 1 |
container_start_page | 5399 |
container_title | Nature communications |
container_volume | 12 |
creator | Steger, Martin Demichev, Vadim Backman, Mattias Ohmayer, Uli Ihmor, Phillip Müller, Stefan Ralser, Markus Daub, Henrik |
description | Mass spectrometry (MS)-based ubiquitinomics provides system-level understanding of ubiquitin signaling. Here we present a scalable workflow for deep and precise in vivo ubiquitinome profiling, coupling an improved sample preparation protocol with data-independent acquisition (DIA)-MS and neural network-based data processing specifically optimized for ubiquitinomics. Compared to data-dependent acquisition (DDA), our method more than triples identification numbers to 70,000 ubiquitinated peptides in single MS runs, while significantly improving robustness and quantification precision. Upon inhibition of the oncology target USP7, we simultaneously record ubiquitination and consequent changes in abundance of more than 8,000 proteins at high temporal resolution. While ubiquitination of hundreds of proteins increases within minutes of USP7 inhibition, we find that only a small fraction of those are ever degraded, thereby dissecting the scope of USP7 action. Our method enables rapid mode-of-action profiling of candidate drugs targeting DUBs or ubiquitin ligases at high precision and throughput.
Combining improved sample preparation, data-independent acquisition mass spectrometry and deep learning, the authors develop a workflow for more robust and precise quantitative ubiquitinome profiling. They use this method to characterize targets of the deubiquitinase USP7 and effects of USP7 inhibitors. |
doi_str_mv | 10.1038/s41467-021-25454-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_284693f5e9d14df9b7b8bbbd91efb49e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_284693f5e9d14df9b7b8bbbd91efb49e</doaj_id><sourcerecordid>2572071901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583t-e08a33db3ff73a3dd6457621aa785e5c9e1a13c54dd63f5a8d968b264c673aa03</originalsourceid><addsrcrecordid>eNp9kl9r1TAYh4s43Nj2BbwKeONNNH_b9EYYc-qByYRt1yFp3tYc2uYsaSv79uacDnVeLDcJyfN7eAm_onhLyQdKuPqYBBVlhQmjmEkhBaavihNGBMW0Yvz1P-fj4jylLcmL11QJ8aY45kJSJbk8KdydHwBHSKFfwCE_osUvAc3WP8x-8mMYAO1iaH3vxw7ZR_R5c4G_36IIC5g-ofvbHxWaTOxgSiiMyOzpCXIM__IOUGpMD2fFUZthOH_aT4v7L1d3l9_w9c3XzeXFNW6k4hMGogznzvK2rbjhzpVCViWjxlRKgmxqoIbyRor8wltplKtLZVkpmjLzhvDTYrN6XTBbvYt-MPFRB-P14SLETps4-aYHzZQo6yyB2lHh2tpWVllrXU2htaKG7Pq0unazHcA1ME7R9M-kz19G_1N3YdFKcEUEz4L3T4IYHmZIkx58aqDvzQhhTprJikmWJxcZffcfug1zHPNXHShS0ZrQTLGVamJIKUL7ZxhK9L4Teu2Ezp3Qh07ofYivoZThsYP4V_1C6jd4Crg_</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572071901</pqid></control><display><type>article</type><title>Time-resolved in vivo ubiquitinome profiling by DIA-MS reveals USP7 targets on a proteome-wide scale</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Steger, Martin ; Demichev, Vadim ; Backman, Mattias ; Ohmayer, Uli ; Ihmor, Phillip ; Müller, Stefan ; Ralser, Markus ; Daub, Henrik</creator><creatorcontrib>Steger, Martin ; Demichev, Vadim ; Backman, Mattias ; Ohmayer, Uli ; Ihmor, Phillip ; Müller, Stefan ; Ralser, Markus ; Daub, Henrik</creatorcontrib><description>Mass spectrometry (MS)-based ubiquitinomics provides system-level understanding of ubiquitin signaling. Here we present a scalable workflow for deep and precise in vivo ubiquitinome profiling, coupling an improved sample preparation protocol with data-independent acquisition (DIA)-MS and neural network-based data processing specifically optimized for ubiquitinomics. Compared to data-dependent acquisition (DDA), our method more than triples identification numbers to 70,000 ubiquitinated peptides in single MS runs, while significantly improving robustness and quantification precision. Upon inhibition of the oncology target USP7, we simultaneously record ubiquitination and consequent changes in abundance of more than 8,000 proteins at high temporal resolution. While ubiquitination of hundreds of proteins increases within minutes of USP7 inhibition, we find that only a small fraction of those are ever degraded, thereby dissecting the scope of USP7 action. Our method enables rapid mode-of-action profiling of candidate drugs targeting DUBs or ubiquitin ligases at high precision and throughput.
Combining improved sample preparation, data-independent acquisition mass spectrometry and deep learning, the authors develop a workflow for more robust and precise quantitative ubiquitinome profiling. They use this method to characterize targets of the deubiquitinase USP7 and effects of USP7 inhibitors.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-25454-1</identifier><identifier>PMID: 34518535</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/296 ; 631/337/458/582 ; 631/45/475 ; 631/553/2701 ; 82/58 ; Data processing ; Deep learning ; Drug delivery ; Drug development ; Humanities and Social Sciences ; Information processing ; Mass spectrometry ; Mass spectroscopy ; multidisciplinary ; Neural networks ; Peptides ; Proteins ; Proteomes ; Sample preparation ; Science ; Science (multidisciplinary) ; Scientific imaging ; Spectroscopy ; Temporal resolution ; Ubiquitin ; Ubiquitination ; Workflow</subject><ispartof>Nature communications, 2021-09, Vol.12 (1), p.5399-5399, Article 5399</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c583t-e08a33db3ff73a3dd6457621aa785e5c9e1a13c54dd63f5a8d968b264c673aa03</citedby><cites>FETCH-LOGICAL-c583t-e08a33db3ff73a3dd6457621aa785e5c9e1a13c54dd63f5a8d968b264c673aa03</cites><orcidid>0000-0003-0438-0410 ; 0000-0001-9535-7413 ; 0000-0003-1637-8190</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2572071901/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2572071901?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids></links><search><creatorcontrib>Steger, Martin</creatorcontrib><creatorcontrib>Demichev, Vadim</creatorcontrib><creatorcontrib>Backman, Mattias</creatorcontrib><creatorcontrib>Ohmayer, Uli</creatorcontrib><creatorcontrib>Ihmor, Phillip</creatorcontrib><creatorcontrib>Müller, Stefan</creatorcontrib><creatorcontrib>Ralser, Markus</creatorcontrib><creatorcontrib>Daub, Henrik</creatorcontrib><title>Time-resolved in vivo ubiquitinome profiling by DIA-MS reveals USP7 targets on a proteome-wide scale</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Mass spectrometry (MS)-based ubiquitinomics provides system-level understanding of ubiquitin signaling. Here we present a scalable workflow for deep and precise in vivo ubiquitinome profiling, coupling an improved sample preparation protocol with data-independent acquisition (DIA)-MS and neural network-based data processing specifically optimized for ubiquitinomics. Compared to data-dependent acquisition (DDA), our method more than triples identification numbers to 70,000 ubiquitinated peptides in single MS runs, while significantly improving robustness and quantification precision. Upon inhibition of the oncology target USP7, we simultaneously record ubiquitination and consequent changes in abundance of more than 8,000 proteins at high temporal resolution. While ubiquitination of hundreds of proteins increases within minutes of USP7 inhibition, we find that only a small fraction of those are ever degraded, thereby dissecting the scope of USP7 action. Our method enables rapid mode-of-action profiling of candidate drugs targeting DUBs or ubiquitin ligases at high precision and throughput.
Combining improved sample preparation, data-independent acquisition mass spectrometry and deep learning, the authors develop a workflow for more robust and precise quantitative ubiquitinome profiling. They use this method to characterize targets of the deubiquitinase USP7 and effects of USP7 inhibitors.</description><subject>631/1647/296</subject><subject>631/337/458/582</subject><subject>631/45/475</subject><subject>631/553/2701</subject><subject>82/58</subject><subject>Data processing</subject><subject>Deep learning</subject><subject>Drug delivery</subject><subject>Drug development</subject><subject>Humanities and Social Sciences</subject><subject>Information processing</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Peptides</subject><subject>Proteins</subject><subject>Proteomes</subject><subject>Sample preparation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Scientific imaging</subject><subject>Spectroscopy</subject><subject>Temporal resolution</subject><subject>Ubiquitin</subject><subject>Ubiquitination</subject><subject>Workflow</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kl9r1TAYh4s43Nj2BbwKeONNNH_b9EYYc-qByYRt1yFp3tYc2uYsaSv79uacDnVeLDcJyfN7eAm_onhLyQdKuPqYBBVlhQmjmEkhBaavihNGBMW0Yvz1P-fj4jylLcmL11QJ8aY45kJSJbk8KdydHwBHSKFfwCE_osUvAc3WP8x-8mMYAO1iaH3vxw7ZR_R5c4G_36IIC5g-ofvbHxWaTOxgSiiMyOzpCXIM__IOUGpMD2fFUZthOH_aT4v7L1d3l9_w9c3XzeXFNW6k4hMGogznzvK2rbjhzpVCViWjxlRKgmxqoIbyRor8wltplKtLZVkpmjLzhvDTYrN6XTBbvYt-MPFRB-P14SLETps4-aYHzZQo6yyB2lHh2tpWVllrXU2htaKG7Pq0unazHcA1ME7R9M-kz19G_1N3YdFKcEUEz4L3T4IYHmZIkx58aqDvzQhhTprJikmWJxcZffcfug1zHPNXHShS0ZrQTLGVamJIKUL7ZxhK9L4Teu2Ezp3Qh07ofYivoZThsYP4V_1C6jd4Crg_</recordid><startdate>20210913</startdate><enddate>20210913</enddate><creator>Steger, Martin</creator><creator>Demichev, Vadim</creator><creator>Backman, Mattias</creator><creator>Ohmayer, Uli</creator><creator>Ihmor, Phillip</creator><creator>Müller, Stefan</creator><creator>Ralser, Markus</creator><creator>Daub, Henrik</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0438-0410</orcidid><orcidid>https://orcid.org/0000-0001-9535-7413</orcidid><orcidid>https://orcid.org/0000-0003-1637-8190</orcidid></search><sort><creationdate>20210913</creationdate><title>Time-resolved in vivo ubiquitinome profiling by DIA-MS reveals USP7 targets on a proteome-wide scale</title><author>Steger, Martin ; Demichev, Vadim ; Backman, Mattias ; Ohmayer, Uli ; Ihmor, Phillip ; Müller, Stefan ; Ralser, Markus ; Daub, Henrik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583t-e08a33db3ff73a3dd6457621aa785e5c9e1a13c54dd63f5a8d968b264c673aa03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/1647/296</topic><topic>631/337/458/582</topic><topic>631/45/475</topic><topic>631/553/2701</topic><topic>82/58</topic><topic>Data processing</topic><topic>Deep learning</topic><topic>Drug delivery</topic><topic>Drug development</topic><topic>Humanities and Social Sciences</topic><topic>Information processing</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Peptides</topic><topic>Proteins</topic><topic>Proteomes</topic><topic>Sample preparation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Scientific imaging</topic><topic>Spectroscopy</topic><topic>Temporal resolution</topic><topic>Ubiquitin</topic><topic>Ubiquitination</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steger, Martin</creatorcontrib><creatorcontrib>Demichev, Vadim</creatorcontrib><creatorcontrib>Backman, Mattias</creatorcontrib><creatorcontrib>Ohmayer, Uli</creatorcontrib><creatorcontrib>Ihmor, Phillip</creatorcontrib><creatorcontrib>Müller, Stefan</creatorcontrib><creatorcontrib>Ralser, Markus</creatorcontrib><creatorcontrib>Daub, Henrik</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ: Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steger, Martin</au><au>Demichev, Vadim</au><au>Backman, Mattias</au><au>Ohmayer, Uli</au><au>Ihmor, Phillip</au><au>Müller, Stefan</au><au>Ralser, Markus</au><au>Daub, Henrik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-resolved in vivo ubiquitinome profiling by DIA-MS reveals USP7 targets on a proteome-wide scale</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2021-09-13</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>5399</spage><epage>5399</epage><pages>5399-5399</pages><artnum>5399</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Mass spectrometry (MS)-based ubiquitinomics provides system-level understanding of ubiquitin signaling. Here we present a scalable workflow for deep and precise in vivo ubiquitinome profiling, coupling an improved sample preparation protocol with data-independent acquisition (DIA)-MS and neural network-based data processing specifically optimized for ubiquitinomics. Compared to data-dependent acquisition (DDA), our method more than triples identification numbers to 70,000 ubiquitinated peptides in single MS runs, while significantly improving robustness and quantification precision. Upon inhibition of the oncology target USP7, we simultaneously record ubiquitination and consequent changes in abundance of more than 8,000 proteins at high temporal resolution. While ubiquitination of hundreds of proteins increases within minutes of USP7 inhibition, we find that only a small fraction of those are ever degraded, thereby dissecting the scope of USP7 action. Our method enables rapid mode-of-action profiling of candidate drugs targeting DUBs or ubiquitin ligases at high precision and throughput.
Combining improved sample preparation, data-independent acquisition mass spectrometry and deep learning, the authors develop a workflow for more robust and precise quantitative ubiquitinome profiling. They use this method to characterize targets of the deubiquitinase USP7 and effects of USP7 inhibitors.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34518535</pmid><doi>10.1038/s41467-021-25454-1</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0438-0410</orcidid><orcidid>https://orcid.org/0000-0001-9535-7413</orcidid><orcidid>https://orcid.org/0000-0003-1637-8190</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2021-09, Vol.12 (1), p.5399-5399, Article 5399 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_284693f5e9d14df9b7b8bbbd91efb49e |
source | Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/1647/296 631/337/458/582 631/45/475 631/553/2701 82/58 Data processing Deep learning Drug delivery Drug development Humanities and Social Sciences Information processing Mass spectrometry Mass spectroscopy multidisciplinary Neural networks Peptides Proteins Proteomes Sample preparation Science Science (multidisciplinary) Scientific imaging Spectroscopy Temporal resolution Ubiquitin Ubiquitination Workflow |
title | Time-resolved in vivo ubiquitinome profiling by DIA-MS reveals USP7 targets on a proteome-wide scale |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A49%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-resolved%20in%20vivo%20ubiquitinome%20profiling%20by%20DIA-MS%20reveals%20USP7%20targets%20on%20a%20proteome-wide%20scale&rft.jtitle=Nature%20communications&rft.au=Steger,%20Martin&rft.date=2021-09-13&rft.volume=12&rft.issue=1&rft.spage=5399&rft.epage=5399&rft.pages=5399-5399&rft.artnum=5399&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-25454-1&rft_dat=%3Cproquest_doaj_%3E2572071901%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c583t-e08a33db3ff73a3dd6457621aa785e5c9e1a13c54dd63f5a8d968b264c673aa03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2572071901&rft_id=info:pmid/34518535&rfr_iscdi=true |