Loading…
A Backstepping Global Fast Terminal Sliding Mode Control for Trajectory Tracking Control of Industrial Robotic Manipulators
We propose a backstepping global fast terminal sliding mode control for trajectory tracking control of industrial robotic manipulators in this article. An integral of the global fast terminal sliding mode surface is firstly suggested to improve the dynamic performance and fast convergence of Sliding...
Saved in:
Published in: | IEEE access 2021, Vol.9, p.31921-31931 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose a backstepping global fast terminal sliding mode control for trajectory tracking control of industrial robotic manipulators in this article. An integral of the global fast terminal sliding mode surface is firstly suggested to improve the dynamic performance and fast convergence of Sliding Mode Control (SMC) and Terminal SMC (TSMC), which also obtains a finite-time convergence. A controller is then developed from the proposed sliding surface using the backstepping control method and High-Order SMC (HOSMC) to ensure the global stability of the control system. Thanks to this proposed method, the controller provides small position and velocity control errors with less oscillation, smooth control torque, and convergence of the control errors in the short time. The stability and convergence also are guaranteed with Lyapunov theory. Finally, computer simulation verifies the effectiveness of the designed controller. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2021.3060115 |