Loading…
Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors
Reactive oxygen species (ROS)-induced apoptosis is a promising treatment strategy for malignant neoplasms. However, current systems are highly dependent on oxygen status and/or external stimuli to generate ROS, which greatly limit their therapeutic efficacy particularly in hypoxic tumors. Herein, we...
Saved in:
Published in: | Nature communications 2018-08, Vol.9 (1), p.3334-14, Article 3334 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c606t-368fdbf3337977c2b9f5ecf9df0b8a39d5c5ae407fa8f408206a8a5a355f86033 |
---|---|
cites | cdi_FETCH-LOGICAL-c606t-368fdbf3337977c2b9f5ecf9df0b8a39d5c5ae407fa8f408206a8a5a355f86033 |
container_end_page | 14 |
container_issue | 1 |
container_start_page | 3334 |
container_title | Nature communications |
container_volume | 9 |
creator | Wang, Zhenzhen Zhang, Yan Ju, Enguo Liu, Zhen Cao, Fangfang Chen, Zhaowei Ren, Jinsong Qu, Xiaogang |
description | Reactive oxygen species (ROS)-induced apoptosis is a promising treatment strategy for malignant neoplasms. However, current systems are highly dependent on oxygen status and/or external stimuli to generate ROS, which greatly limit their therapeutic efficacy particularly in hypoxic tumors. Herein, we develop a biomimetic nanoflower based on self-assembly of nanozymes that can catalyze a cascade of intracellular biochemical reactions to produce ROS in both normoxic and hypoxic conditions without any external stimuli. In our formulation, PtCo nanoparticles are firstly synthesized and used to direct the growth of MnO
2
. By adjusting the ratio of reactants, highly-ordered MnO
2
@PtCo nanoflowers with excellent catalytic efficiency are obtained, where PtCo behaves as oxidase mimic and MnO
2
functions as catalase mimic. In this way, the well-defined MnO
2
@PtCo nanoflowers not only can relieve hypoxic condition but also induce cell apoptosis significantly through ROS-mediated mechanism, thereby resulting in remarkable and specific inhibition of tumor growth.
Hypoxic tumors are resistant to dynamic therapy, limiting potential treatment options. Here, the authors describe a nanoflower where oxidase mimicking PtCo nanoparticles are decorated with catalase mimicking MnO
2
to reverse tumor hypoxia and generate reactive oxygen species for dynamic therapy. |
doi_str_mv | 10.1038/s41467-018-05798-x |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_288800d421ff43d08494bee673ac3efb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_288800d421ff43d08494bee673ac3efb</doaj_id><sourcerecordid>2090285883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-368fdbf3337977c2b9f5ecf9df0b8a39d5c5ae407fa8f408206a8a5a355f86033</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSMEolXpF-CALHEO-F8S54IEVWkrVeICZ2tij1Ovknixk7LLp8e7KaW94MtYfuPfzNMrireMfmBUqI9JMlk3JWWqpFXTqnL3ojjlVLKSNVy8fHI_Kc5T2tB8RMuUlK-LE0EZbyRVp8X8xYfRjzh7QyaYghvCL4yJdHuScHAlpIRjN-xJcEf9937EROZA_GQXg7nMEQwOwzJAJGHnLcz-HomFEXok0IOf0kzu9tusGTIvY4jpTfHKwZDw_KGeFT--Xn6_uC5vv13dXHy-LU1N67kUtXK2c0KIpm0aw7vWVWhcax3tFIjWVqYClLRxoFx2w2kNCioQVeVUTYU4K25Wrg2w0dvoR4h7HcDr40OIvYaYnQ-ouVKKUis5c04KS5VsZYdYNwKMQNdl1qeVtV26Ea3Bg_HhGfS5Mvk73Yd7XTPKOWMZ8P4BEMPPBdOsN2GJU_avOW0pV5VSh5X52mViSCmie5zAqD4Er9fgdQ5eH4PXu_zp3dPdHr_8jTk3iLUhZWnqMf6b_R_sH612vQ8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090285883</pqid></control><display><type>article</type><title>Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Wang, Zhenzhen ; Zhang, Yan ; Ju, Enguo ; Liu, Zhen ; Cao, Fangfang ; Chen, Zhaowei ; Ren, Jinsong ; Qu, Xiaogang</creator><creatorcontrib>Wang, Zhenzhen ; Zhang, Yan ; Ju, Enguo ; Liu, Zhen ; Cao, Fangfang ; Chen, Zhaowei ; Ren, Jinsong ; Qu, Xiaogang</creatorcontrib><description>Reactive oxygen species (ROS)-induced apoptosis is a promising treatment strategy for malignant neoplasms. However, current systems are highly dependent on oxygen status and/or external stimuli to generate ROS, which greatly limit their therapeutic efficacy particularly in hypoxic tumors. Herein, we develop a biomimetic nanoflower based on self-assembly of nanozymes that can catalyze a cascade of intracellular biochemical reactions to produce ROS in both normoxic and hypoxic conditions without any external stimuli. In our formulation, PtCo nanoparticles are firstly synthesized and used to direct the growth of MnO
2
. By adjusting the ratio of reactants, highly-ordered MnO
2
@PtCo nanoflowers with excellent catalytic efficiency are obtained, where PtCo behaves as oxidase mimic and MnO
2
functions as catalase mimic. In this way, the well-defined MnO
2
@PtCo nanoflowers not only can relieve hypoxic condition but also induce cell apoptosis significantly through ROS-mediated mechanism, thereby resulting in remarkable and specific inhibition of tumor growth.
Hypoxic tumors are resistant to dynamic therapy, limiting potential treatment options. Here, the authors describe a nanoflower where oxidase mimicking PtCo nanoparticles are decorated with catalase mimicking MnO
2
to reverse tumor hypoxia and generate reactive oxygen species for dynamic therapy.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-018-05798-x</identifier><identifier>PMID: 30127408</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/31 ; 631/67/1059 ; 639/301/357/354 ; 692/699/67 ; 692/700/155 ; Animals ; Apoptosis ; Biomimetics ; Cascade chemical reactions ; Catalase ; Catalysis ; Cell Death ; Cell Line, Tumor ; Chemical reactions ; External stimuli ; Humanities and Social Sciences ; Hypoxia ; Injections, Intravenous ; Intracellular ; Manganese Compounds - chemistry ; Manganese dioxide ; Mice ; multidisciplinary ; Nanoparticles ; Nanoparticles - chemistry ; Nanoparticles - ultrastructure ; Neoplasia ; Neoplasms ; Oxidation-Reduction ; Oxides - chemistry ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Science ; Science (multidisciplinary) ; Self-assembly ; Spheroids, Cellular - pathology ; Stimuli ; Tumor Hypoxia ; Tumors</subject><ispartof>Nature communications, 2018-08, Vol.9 (1), p.3334-14, Article 3334</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-368fdbf3337977c2b9f5ecf9df0b8a39d5c5ae407fa8f408206a8a5a355f86033</citedby><cites>FETCH-LOGICAL-c606t-368fdbf3337977c2b9f5ecf9df0b8a39d5c5ae407fa8f408206a8a5a355f86033</cites><orcidid>0000-0003-2868-3205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2090285883/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2090285883?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30127408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Zhenzhen</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Ju, Enguo</creatorcontrib><creatorcontrib>Liu, Zhen</creatorcontrib><creatorcontrib>Cao, Fangfang</creatorcontrib><creatorcontrib>Chen, Zhaowei</creatorcontrib><creatorcontrib>Ren, Jinsong</creatorcontrib><creatorcontrib>Qu, Xiaogang</creatorcontrib><title>Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Reactive oxygen species (ROS)-induced apoptosis is a promising treatment strategy for malignant neoplasms. However, current systems are highly dependent on oxygen status and/or external stimuli to generate ROS, which greatly limit their therapeutic efficacy particularly in hypoxic tumors. Herein, we develop a biomimetic nanoflower based on self-assembly of nanozymes that can catalyze a cascade of intracellular biochemical reactions to produce ROS in both normoxic and hypoxic conditions without any external stimuli. In our formulation, PtCo nanoparticles are firstly synthesized and used to direct the growth of MnO
2
. By adjusting the ratio of reactants, highly-ordered MnO
2
@PtCo nanoflowers with excellent catalytic efficiency are obtained, where PtCo behaves as oxidase mimic and MnO
2
functions as catalase mimic. In this way, the well-defined MnO
2
@PtCo nanoflowers not only can relieve hypoxic condition but also induce cell apoptosis significantly through ROS-mediated mechanism, thereby resulting in remarkable and specific inhibition of tumor growth.
Hypoxic tumors are resistant to dynamic therapy, limiting potential treatment options. Here, the authors describe a nanoflower where oxidase mimicking PtCo nanoparticles are decorated with catalase mimicking MnO
2
to reverse tumor hypoxia and generate reactive oxygen species for dynamic therapy.</description><subject>13/31</subject><subject>631/67/1059</subject><subject>639/301/357/354</subject><subject>692/699/67</subject><subject>692/700/155</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Biomimetics</subject><subject>Cascade chemical reactions</subject><subject>Catalase</subject><subject>Catalysis</subject><subject>Cell Death</subject><subject>Cell Line, Tumor</subject><subject>Chemical reactions</subject><subject>External stimuli</subject><subject>Humanities and Social Sciences</subject><subject>Hypoxia</subject><subject>Injections, Intravenous</subject><subject>Intracellular</subject><subject>Manganese Compounds - chemistry</subject><subject>Manganese dioxide</subject><subject>Mice</subject><subject>multidisciplinary</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - ultrastructure</subject><subject>Neoplasia</subject><subject>Neoplasms</subject><subject>Oxidation-Reduction</subject><subject>Oxides - chemistry</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Self-assembly</subject><subject>Spheroids, Cellular - pathology</subject><subject>Stimuli</subject><subject>Tumor Hypoxia</subject><subject>Tumors</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU9v1DAQxSMEolXpF-CALHEO-F8S54IEVWkrVeICZ2tij1Ovknixk7LLp8e7KaW94MtYfuPfzNMrireMfmBUqI9JMlk3JWWqpFXTqnL3ojjlVLKSNVy8fHI_Kc5T2tB8RMuUlK-LE0EZbyRVp8X8xYfRjzh7QyaYghvCL4yJdHuScHAlpIRjN-xJcEf9937EROZA_GQXg7nMEQwOwzJAJGHnLcz-HomFEXok0IOf0kzu9tusGTIvY4jpTfHKwZDw_KGeFT--Xn6_uC5vv13dXHy-LU1N67kUtXK2c0KIpm0aw7vWVWhcax3tFIjWVqYClLRxoFx2w2kNCioQVeVUTYU4K25Wrg2w0dvoR4h7HcDr40OIvYaYnQ-ouVKKUis5c04KS5VsZYdYNwKMQNdl1qeVtV26Ea3Bg_HhGfS5Mvk73Yd7XTPKOWMZ8P4BEMPPBdOsN2GJU_avOW0pV5VSh5X52mViSCmie5zAqD4Er9fgdQ5eH4PXu_zp3dPdHr_8jTk3iLUhZWnqMf6b_R_sH612vQ8</recordid><startdate>20180820</startdate><enddate>20180820</enddate><creator>Wang, Zhenzhen</creator><creator>Zhang, Yan</creator><creator>Ju, Enguo</creator><creator>Liu, Zhen</creator><creator>Cao, Fangfang</creator><creator>Chen, Zhaowei</creator><creator>Ren, Jinsong</creator><creator>Qu, Xiaogang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2868-3205</orcidid></search><sort><creationdate>20180820</creationdate><title>Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors</title><author>Wang, Zhenzhen ; Zhang, Yan ; Ju, Enguo ; Liu, Zhen ; Cao, Fangfang ; Chen, Zhaowei ; Ren, Jinsong ; Qu, Xiaogang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-368fdbf3337977c2b9f5ecf9df0b8a39d5c5ae407fa8f408206a8a5a355f86033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/31</topic><topic>631/67/1059</topic><topic>639/301/357/354</topic><topic>692/699/67</topic><topic>692/700/155</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Biomimetics</topic><topic>Cascade chemical reactions</topic><topic>Catalase</topic><topic>Catalysis</topic><topic>Cell Death</topic><topic>Cell Line, Tumor</topic><topic>Chemical reactions</topic><topic>External stimuli</topic><topic>Humanities and Social Sciences</topic><topic>Hypoxia</topic><topic>Injections, Intravenous</topic><topic>Intracellular</topic><topic>Manganese Compounds - chemistry</topic><topic>Manganese dioxide</topic><topic>Mice</topic><topic>multidisciplinary</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - ultrastructure</topic><topic>Neoplasia</topic><topic>Neoplasms</topic><topic>Oxidation-Reduction</topic><topic>Oxides - chemistry</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Self-assembly</topic><topic>Spheroids, Cellular - pathology</topic><topic>Stimuli</topic><topic>Tumor Hypoxia</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhenzhen</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Ju, Enguo</creatorcontrib><creatorcontrib>Liu, Zhen</creatorcontrib><creatorcontrib>Cao, Fangfang</creatorcontrib><creatorcontrib>Chen, Zhaowei</creatorcontrib><creatorcontrib>Ren, Jinsong</creatorcontrib><creatorcontrib>Qu, Xiaogang</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhenzhen</au><au>Zhang, Yan</au><au>Ju, Enguo</au><au>Liu, Zhen</au><au>Cao, Fangfang</au><au>Chen, Zhaowei</au><au>Ren, Jinsong</au><au>Qu, Xiaogang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2018-08-20</date><risdate>2018</risdate><volume>9</volume><issue>1</issue><spage>3334</spage><epage>14</epage><pages>3334-14</pages><artnum>3334</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Reactive oxygen species (ROS)-induced apoptosis is a promising treatment strategy for malignant neoplasms. However, current systems are highly dependent on oxygen status and/or external stimuli to generate ROS, which greatly limit their therapeutic efficacy particularly in hypoxic tumors. Herein, we develop a biomimetic nanoflower based on self-assembly of nanozymes that can catalyze a cascade of intracellular biochemical reactions to produce ROS in both normoxic and hypoxic conditions without any external stimuli. In our formulation, PtCo nanoparticles are firstly synthesized and used to direct the growth of MnO
2
. By adjusting the ratio of reactants, highly-ordered MnO
2
@PtCo nanoflowers with excellent catalytic efficiency are obtained, where PtCo behaves as oxidase mimic and MnO
2
functions as catalase mimic. In this way, the well-defined MnO
2
@PtCo nanoflowers not only can relieve hypoxic condition but also induce cell apoptosis significantly through ROS-mediated mechanism, thereby resulting in remarkable and specific inhibition of tumor growth.
Hypoxic tumors are resistant to dynamic therapy, limiting potential treatment options. Here, the authors describe a nanoflower where oxidase mimicking PtCo nanoparticles are decorated with catalase mimicking MnO
2
to reverse tumor hypoxia and generate reactive oxygen species for dynamic therapy.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30127408</pmid><doi>10.1038/s41467-018-05798-x</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2868-3205</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2018-08, Vol.9 (1), p.3334-14, Article 3334 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_288800d421ff43d08494bee673ac3efb |
source | Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13/31 631/67/1059 639/301/357/354 692/699/67 692/700/155 Animals Apoptosis Biomimetics Cascade chemical reactions Catalase Catalysis Cell Death Cell Line, Tumor Chemical reactions External stimuli Humanities and Social Sciences Hypoxia Injections, Intravenous Intracellular Manganese Compounds - chemistry Manganese dioxide Mice multidisciplinary Nanoparticles Nanoparticles - chemistry Nanoparticles - ultrastructure Neoplasia Neoplasms Oxidation-Reduction Oxides - chemistry Reactive oxygen species Reactive Oxygen Species - metabolism Science Science (multidisciplinary) Self-assembly Spheroids, Cellular - pathology Stimuli Tumor Hypoxia Tumors |
title | Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A36%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomimetic%20nanoflowers%20by%20self-assembly%20of%20nanozymes%20to%20induce%20intracellular%20oxidative%20damage%20against%20hypoxic%20tumors&rft.jtitle=Nature%20communications&rft.au=Wang,%20Zhenzhen&rft.date=2018-08-20&rft.volume=9&rft.issue=1&rft.spage=3334&rft.epage=14&rft.pages=3334-14&rft.artnum=3334&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-018-05798-x&rft_dat=%3Cproquest_doaj_%3E2090285883%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c606t-368fdbf3337977c2b9f5ecf9df0b8a39d5c5ae407fa8f408206a8a5a355f86033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2090285883&rft_id=info:pmid/30127408&rfr_iscdi=true |