Loading…

Scaling-Factor and Design Guidelines for Shielded-Capacitive Power Transfer

This paper introduces scaling-factor and design guidelines for shielded-capacitive power transfer (shielded-CPT) systems, offering a simplified design process, coupling-structure optimization, and consideration of safety. A novel scaling-factor-analysis method is proposed by determining the configur...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2020-08, Vol.13 (16), p.4240
Main Authors: Muharam, Aam, Ahmad, Suziana, Hattori, Reiji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c427t-311fd0bcc8d9353b662e31ec2520ba592389c0b98421b2429ce1725097ffdd543
cites cdi_FETCH-LOGICAL-c427t-311fd0bcc8d9353b662e31ec2520ba592389c0b98421b2429ce1725097ffdd543
container_end_page
container_issue 16
container_start_page 4240
container_title Energies (Basel)
container_volume 13
creator Muharam, Aam
Ahmad, Suziana
Hattori, Reiji
description This paper introduces scaling-factor and design guidelines for shielded-capacitive power transfer (shielded-CPT) systems, offering a simplified design process, coupling-structure optimization, and consideration of safety. A novel scaling-factor-analysis method is proposed by determining the configuration of the coupling structure that improves system safety and increases operating efficiency while minimizing the gap between the shield and the coupler plate. The inductor-series resistance is also analyzed to study the loss efficiency in the shielded-CPT system. The relationship among the shield-coupler gap, distance between the couplers, conductive-plate size, and delivered power is examined and presented. The proposed method is validated by implementing the shielded-CPT system with hardware and the result suggests that the proposed method can be used to design shielded-CPT systems with scaling-factor and safety considerations.
doi_str_mv 10.3390/en13164240
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_288e198a4c6a4f4ea73c27a65f476b55</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_288e198a4c6a4f4ea73c27a65f476b55</doaj_id><sourcerecordid>2435649374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-311fd0bcc8d9353b662e31ec2520ba592389c0b98421b2429ce1725097ffdd543</originalsourceid><addsrcrecordid>eNpNkEFLAzEQhRdRsNRe_AUL3oTVJJNsNkepthYLCq3nkE0mNaXu1mSr-O_dWlHnMsO84XvDy7JzSq4AFLnGhgItOePkKBtQpcqCEgnH_-bTbJTSmvQFQAFgkD0srNmEZlVMjO3amJvG5beYwqrJp7vgsNcw5b5XFi8BNw5dMTZbY0MX3jF_aj8w5stomuQxnmUn3mwSjn76MHue3C3H98X8cTob38wLy5nsCqDUO1JbWzkFAuqyZAgULROM1EYoBpWypFYVZ7RmnCmLVDJBlPTeOcFhmM0OXNeatd7G8Grip25N0N-LNq60iV2wG9SsqpCqynBbGu45GgmWSVMKz2VZC9GzLg6sbWzfdpg6vW53senf14yDKLkCuXe8PFzZ2KYU0f-6UqL32eu_7OELWv5z-Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435649374</pqid></control><display><type>article</type><title>Scaling-Factor and Design Guidelines for Shielded-Capacitive Power Transfer</title><source>Publicly Available Content (ProQuest)</source><creator>Muharam, Aam ; Ahmad, Suziana ; Hattori, Reiji</creator><creatorcontrib>Muharam, Aam ; Ahmad, Suziana ; Hattori, Reiji</creatorcontrib><description>This paper introduces scaling-factor and design guidelines for shielded-capacitive power transfer (shielded-CPT) systems, offering a simplified design process, coupling-structure optimization, and consideration of safety. A novel scaling-factor-analysis method is proposed by determining the configuration of the coupling structure that improves system safety and increases operating efficiency while minimizing the gap between the shield and the coupler plate. The inductor-series resistance is also analyzed to study the loss efficiency in the shielded-CPT system. The relationship among the shield-coupler gap, distance between the couplers, conductive-plate size, and delivered power is examined and presented. The proposed method is validated by implementing the shielded-CPT system with hardware and the result suggests that the proposed method can be used to design shielded-CPT systems with scaling-factor and safety considerations.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en13164240</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>capacitive wireless power transfer ; Couplers ; Design ; Design factors ; design guidelines ; Design optimization ; Efficiency ; electric field ; Guidelines ; Safety ; Scaling factors ; shielded-capacitive power transfer ; wireless power transmission</subject><ispartof>Energies (Basel), 2020-08, Vol.13 (16), p.4240</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-311fd0bcc8d9353b662e31ec2520ba592389c0b98421b2429ce1725097ffdd543</citedby><cites>FETCH-LOGICAL-c427t-311fd0bcc8d9353b662e31ec2520ba592389c0b98421b2429ce1725097ffdd543</cites><orcidid>0000-0001-8803-7999</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2435649374/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2435649374?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Muharam, Aam</creatorcontrib><creatorcontrib>Ahmad, Suziana</creatorcontrib><creatorcontrib>Hattori, Reiji</creatorcontrib><title>Scaling-Factor and Design Guidelines for Shielded-Capacitive Power Transfer</title><title>Energies (Basel)</title><description>This paper introduces scaling-factor and design guidelines for shielded-capacitive power transfer (shielded-CPT) systems, offering a simplified design process, coupling-structure optimization, and consideration of safety. A novel scaling-factor-analysis method is proposed by determining the configuration of the coupling structure that improves system safety and increases operating efficiency while minimizing the gap between the shield and the coupler plate. The inductor-series resistance is also analyzed to study the loss efficiency in the shielded-CPT system. The relationship among the shield-coupler gap, distance between the couplers, conductive-plate size, and delivered power is examined and presented. The proposed method is validated by implementing the shielded-CPT system with hardware and the result suggests that the proposed method can be used to design shielded-CPT systems with scaling-factor and safety considerations.</description><subject>capacitive wireless power transfer</subject><subject>Couplers</subject><subject>Design</subject><subject>Design factors</subject><subject>design guidelines</subject><subject>Design optimization</subject><subject>Efficiency</subject><subject>electric field</subject><subject>Guidelines</subject><subject>Safety</subject><subject>Scaling factors</subject><subject>shielded-capacitive power transfer</subject><subject>wireless power transmission</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkEFLAzEQhRdRsNRe_AUL3oTVJJNsNkepthYLCq3nkE0mNaXu1mSr-O_dWlHnMsO84XvDy7JzSq4AFLnGhgItOePkKBtQpcqCEgnH_-bTbJTSmvQFQAFgkD0srNmEZlVMjO3amJvG5beYwqrJp7vgsNcw5b5XFi8BNw5dMTZbY0MX3jF_aj8w5stomuQxnmUn3mwSjn76MHue3C3H98X8cTob38wLy5nsCqDUO1JbWzkFAuqyZAgULROM1EYoBpWypFYVZ7RmnCmLVDJBlPTeOcFhmM0OXNeatd7G8Grip25N0N-LNq60iV2wG9SsqpCqynBbGu45GgmWSVMKz2VZC9GzLg6sbWzfdpg6vW53senf14yDKLkCuXe8PFzZ2KYU0f-6UqL32eu_7OELWv5z-Q</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Muharam, Aam</creator><creator>Ahmad, Suziana</creator><creator>Hattori, Reiji</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8803-7999</orcidid></search><sort><creationdate>20200801</creationdate><title>Scaling-Factor and Design Guidelines for Shielded-Capacitive Power Transfer</title><author>Muharam, Aam ; Ahmad, Suziana ; Hattori, Reiji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-311fd0bcc8d9353b662e31ec2520ba592389c0b98421b2429ce1725097ffdd543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>capacitive wireless power transfer</topic><topic>Couplers</topic><topic>Design</topic><topic>Design factors</topic><topic>design guidelines</topic><topic>Design optimization</topic><topic>Efficiency</topic><topic>electric field</topic><topic>Guidelines</topic><topic>Safety</topic><topic>Scaling factors</topic><topic>shielded-capacitive power transfer</topic><topic>wireless power transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muharam, Aam</creatorcontrib><creatorcontrib>Ahmad, Suziana</creatorcontrib><creatorcontrib>Hattori, Reiji</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muharam, Aam</au><au>Ahmad, Suziana</au><au>Hattori, Reiji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling-Factor and Design Guidelines for Shielded-Capacitive Power Transfer</atitle><jtitle>Energies (Basel)</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>13</volume><issue>16</issue><spage>4240</spage><pages>4240-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>This paper introduces scaling-factor and design guidelines for shielded-capacitive power transfer (shielded-CPT) systems, offering a simplified design process, coupling-structure optimization, and consideration of safety. A novel scaling-factor-analysis method is proposed by determining the configuration of the coupling structure that improves system safety and increases operating efficiency while minimizing the gap between the shield and the coupler plate. The inductor-series resistance is also analyzed to study the loss efficiency in the shielded-CPT system. The relationship among the shield-coupler gap, distance between the couplers, conductive-plate size, and delivered power is examined and presented. The proposed method is validated by implementing the shielded-CPT system with hardware and the result suggests that the proposed method can be used to design shielded-CPT systems with scaling-factor and safety considerations.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en13164240</doi><orcidid>https://orcid.org/0000-0001-8803-7999</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2020-08, Vol.13 (16), p.4240
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_288e198a4c6a4f4ea73c27a65f476b55
source Publicly Available Content (ProQuest)
subjects capacitive wireless power transfer
Couplers
Design
Design factors
design guidelines
Design optimization
Efficiency
electric field
Guidelines
Safety
Scaling factors
shielded-capacitive power transfer
wireless power transmission
title Scaling-Factor and Design Guidelines for Shielded-Capacitive Power Transfer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling-Factor%20and%20Design%20Guidelines%20for%20Shielded-Capacitive%20Power%20Transfer&rft.jtitle=Energies%20(Basel)&rft.au=Muharam,%20Aam&rft.date=2020-08-01&rft.volume=13&rft.issue=16&rft.spage=4240&rft.pages=4240-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en13164240&rft_dat=%3Cproquest_doaj_%3E2435649374%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-311fd0bcc8d9353b662e31ec2520ba592389c0b98421b2429ce1725097ffdd543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2435649374&rft_id=info:pmid/&rfr_iscdi=true