Loading…
Scaling-Factor and Design Guidelines for Shielded-Capacitive Power Transfer
This paper introduces scaling-factor and design guidelines for shielded-capacitive power transfer (shielded-CPT) systems, offering a simplified design process, coupling-structure optimization, and consideration of safety. A novel scaling-factor-analysis method is proposed by determining the configur...
Saved in:
Published in: | Energies (Basel) 2020-08, Vol.13 (16), p.4240 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c427t-311fd0bcc8d9353b662e31ec2520ba592389c0b98421b2429ce1725097ffdd543 |
---|---|
cites | cdi_FETCH-LOGICAL-c427t-311fd0bcc8d9353b662e31ec2520ba592389c0b98421b2429ce1725097ffdd543 |
container_end_page | |
container_issue | 16 |
container_start_page | 4240 |
container_title | Energies (Basel) |
container_volume | 13 |
creator | Muharam, Aam Ahmad, Suziana Hattori, Reiji |
description | This paper introduces scaling-factor and design guidelines for shielded-capacitive power transfer (shielded-CPT) systems, offering a simplified design process, coupling-structure optimization, and consideration of safety. A novel scaling-factor-analysis method is proposed by determining the configuration of the coupling structure that improves system safety and increases operating efficiency while minimizing the gap between the shield and the coupler plate. The inductor-series resistance is also analyzed to study the loss efficiency in the shielded-CPT system. The relationship among the shield-coupler gap, distance between the couplers, conductive-plate size, and delivered power is examined and presented. The proposed method is validated by implementing the shielded-CPT system with hardware and the result suggests that the proposed method can be used to design shielded-CPT systems with scaling-factor and safety considerations. |
doi_str_mv | 10.3390/en13164240 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_288e198a4c6a4f4ea73c27a65f476b55</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_288e198a4c6a4f4ea73c27a65f476b55</doaj_id><sourcerecordid>2435649374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-311fd0bcc8d9353b662e31ec2520ba592389c0b98421b2429ce1725097ffdd543</originalsourceid><addsrcrecordid>eNpNkEFLAzEQhRdRsNRe_AUL3oTVJJNsNkepthYLCq3nkE0mNaXu1mSr-O_dWlHnMsO84XvDy7JzSq4AFLnGhgItOePkKBtQpcqCEgnH_-bTbJTSmvQFQAFgkD0srNmEZlVMjO3amJvG5beYwqrJp7vgsNcw5b5XFi8BNw5dMTZbY0MX3jF_aj8w5stomuQxnmUn3mwSjn76MHue3C3H98X8cTob38wLy5nsCqDUO1JbWzkFAuqyZAgULROM1EYoBpWypFYVZ7RmnCmLVDJBlPTeOcFhmM0OXNeatd7G8Grip25N0N-LNq60iV2wG9SsqpCqynBbGu45GgmWSVMKz2VZC9GzLg6sbWzfdpg6vW53senf14yDKLkCuXe8PFzZ2KYU0f-6UqL32eu_7OELWv5z-Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435649374</pqid></control><display><type>article</type><title>Scaling-Factor and Design Guidelines for Shielded-Capacitive Power Transfer</title><source>Publicly Available Content (ProQuest)</source><creator>Muharam, Aam ; Ahmad, Suziana ; Hattori, Reiji</creator><creatorcontrib>Muharam, Aam ; Ahmad, Suziana ; Hattori, Reiji</creatorcontrib><description>This paper introduces scaling-factor and design guidelines for shielded-capacitive power transfer (shielded-CPT) systems, offering a simplified design process, coupling-structure optimization, and consideration of safety. A novel scaling-factor-analysis method is proposed by determining the configuration of the coupling structure that improves system safety and increases operating efficiency while minimizing the gap between the shield and the coupler plate. The inductor-series resistance is also analyzed to study the loss efficiency in the shielded-CPT system. The relationship among the shield-coupler gap, distance between the couplers, conductive-plate size, and delivered power is examined and presented. The proposed method is validated by implementing the shielded-CPT system with hardware and the result suggests that the proposed method can be used to design shielded-CPT systems with scaling-factor and safety considerations.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en13164240</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>capacitive wireless power transfer ; Couplers ; Design ; Design factors ; design guidelines ; Design optimization ; Efficiency ; electric field ; Guidelines ; Safety ; Scaling factors ; shielded-capacitive power transfer ; wireless power transmission</subject><ispartof>Energies (Basel), 2020-08, Vol.13 (16), p.4240</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-311fd0bcc8d9353b662e31ec2520ba592389c0b98421b2429ce1725097ffdd543</citedby><cites>FETCH-LOGICAL-c427t-311fd0bcc8d9353b662e31ec2520ba592389c0b98421b2429ce1725097ffdd543</cites><orcidid>0000-0001-8803-7999</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2435649374/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2435649374?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Muharam, Aam</creatorcontrib><creatorcontrib>Ahmad, Suziana</creatorcontrib><creatorcontrib>Hattori, Reiji</creatorcontrib><title>Scaling-Factor and Design Guidelines for Shielded-Capacitive Power Transfer</title><title>Energies (Basel)</title><description>This paper introduces scaling-factor and design guidelines for shielded-capacitive power transfer (shielded-CPT) systems, offering a simplified design process, coupling-structure optimization, and consideration of safety. A novel scaling-factor-analysis method is proposed by determining the configuration of the coupling structure that improves system safety and increases operating efficiency while minimizing the gap between the shield and the coupler plate. The inductor-series resistance is also analyzed to study the loss efficiency in the shielded-CPT system. The relationship among the shield-coupler gap, distance between the couplers, conductive-plate size, and delivered power is examined and presented. The proposed method is validated by implementing the shielded-CPT system with hardware and the result suggests that the proposed method can be used to design shielded-CPT systems with scaling-factor and safety considerations.</description><subject>capacitive wireless power transfer</subject><subject>Couplers</subject><subject>Design</subject><subject>Design factors</subject><subject>design guidelines</subject><subject>Design optimization</subject><subject>Efficiency</subject><subject>electric field</subject><subject>Guidelines</subject><subject>Safety</subject><subject>Scaling factors</subject><subject>shielded-capacitive power transfer</subject><subject>wireless power transmission</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkEFLAzEQhRdRsNRe_AUL3oTVJJNsNkepthYLCq3nkE0mNaXu1mSr-O_dWlHnMsO84XvDy7JzSq4AFLnGhgItOePkKBtQpcqCEgnH_-bTbJTSmvQFQAFgkD0srNmEZlVMjO3amJvG5beYwqrJp7vgsNcw5b5XFi8BNw5dMTZbY0MX3jF_aj8w5stomuQxnmUn3mwSjn76MHue3C3H98X8cTob38wLy5nsCqDUO1JbWzkFAuqyZAgULROM1EYoBpWypFYVZ7RmnCmLVDJBlPTeOcFhmM0OXNeatd7G8Grip25N0N-LNq60iV2wG9SsqpCqynBbGu45GgmWSVMKz2VZC9GzLg6sbWzfdpg6vW53senf14yDKLkCuXe8PFzZ2KYU0f-6UqL32eu_7OELWv5z-Q</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Muharam, Aam</creator><creator>Ahmad, Suziana</creator><creator>Hattori, Reiji</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8803-7999</orcidid></search><sort><creationdate>20200801</creationdate><title>Scaling-Factor and Design Guidelines for Shielded-Capacitive Power Transfer</title><author>Muharam, Aam ; Ahmad, Suziana ; Hattori, Reiji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-311fd0bcc8d9353b662e31ec2520ba592389c0b98421b2429ce1725097ffdd543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>capacitive wireless power transfer</topic><topic>Couplers</topic><topic>Design</topic><topic>Design factors</topic><topic>design guidelines</topic><topic>Design optimization</topic><topic>Efficiency</topic><topic>electric field</topic><topic>Guidelines</topic><topic>Safety</topic><topic>Scaling factors</topic><topic>shielded-capacitive power transfer</topic><topic>wireless power transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muharam, Aam</creatorcontrib><creatorcontrib>Ahmad, Suziana</creatorcontrib><creatorcontrib>Hattori, Reiji</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muharam, Aam</au><au>Ahmad, Suziana</au><au>Hattori, Reiji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling-Factor and Design Guidelines for Shielded-Capacitive Power Transfer</atitle><jtitle>Energies (Basel)</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>13</volume><issue>16</issue><spage>4240</spage><pages>4240-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>This paper introduces scaling-factor and design guidelines for shielded-capacitive power transfer (shielded-CPT) systems, offering a simplified design process, coupling-structure optimization, and consideration of safety. A novel scaling-factor-analysis method is proposed by determining the configuration of the coupling structure that improves system safety and increases operating efficiency while minimizing the gap between the shield and the coupler plate. The inductor-series resistance is also analyzed to study the loss efficiency in the shielded-CPT system. The relationship among the shield-coupler gap, distance between the couplers, conductive-plate size, and delivered power is examined and presented. The proposed method is validated by implementing the shielded-CPT system with hardware and the result suggests that the proposed method can be used to design shielded-CPT systems with scaling-factor and safety considerations.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en13164240</doi><orcidid>https://orcid.org/0000-0001-8803-7999</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1073 |
ispartof | Energies (Basel), 2020-08, Vol.13 (16), p.4240 |
issn | 1996-1073 1996-1073 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_288e198a4c6a4f4ea73c27a65f476b55 |
source | Publicly Available Content (ProQuest) |
subjects | capacitive wireless power transfer Couplers Design Design factors design guidelines Design optimization Efficiency electric field Guidelines Safety Scaling factors shielded-capacitive power transfer wireless power transmission |
title | Scaling-Factor and Design Guidelines for Shielded-Capacitive Power Transfer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling-Factor%20and%20Design%20Guidelines%20for%20Shielded-Capacitive%20Power%20Transfer&rft.jtitle=Energies%20(Basel)&rft.au=Muharam,%20Aam&rft.date=2020-08-01&rft.volume=13&rft.issue=16&rft.spage=4240&rft.pages=4240-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en13164240&rft_dat=%3Cproquest_doaj_%3E2435649374%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-311fd0bcc8d9353b662e31ec2520ba592389c0b98421b2429ce1725097ffdd543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2435649374&rft_id=info:pmid/&rfr_iscdi=true |