Loading…
A Mathematical Model on the Dynamics of In-Host Infection Cholera Disease with Vaccination
In this paper, a within-host cholera mathematical model has been developed using a system of ordinary differential equations incorporating vaccine efficacy. The formulated model considers cells in an already vaccinated individual with a vaccine whose efficacy is γ. The solutions of the model have be...
Saved in:
Published in: | Discrete dynamics in nature and society 2023-03, Vol.2023, p.1-11 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c470t-ae468c5aa72ef270e3eb1967c5734393e55cc4b204f9931f26e6fa973961e6713 |
---|---|
cites | cdi_FETCH-LOGICAL-c470t-ae468c5aa72ef270e3eb1967c5734393e55cc4b204f9931f26e6fa973961e6713 |
container_end_page | 11 |
container_issue | |
container_start_page | 1 |
container_title | Discrete dynamics in nature and society |
container_volume | 2023 |
creator | Jackob, Owade Kennedy Akinyi, Okaka Tireito, Frankline |
description | In this paper, a within-host cholera mathematical model has been developed using a system of ordinary differential equations incorporating vaccine efficacy. The formulated model considers cells in an already vaccinated individual with a vaccine whose efficacy is γ. The solutions of the model have been shown to be both positive and bounded hence well-posed. The vaccine basic reproduction number has been carried out using the next generation matrix approach and is given by R0V=γ/d+μ2 and R0V |
doi_str_mv | 10.1155/2023/1465228 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_28981811aa3e49a5966ce8538c659d91</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A740926141</galeid><doaj_id>oai_doaj_org_article_28981811aa3e49a5966ce8538c659d91</doaj_id><sourcerecordid>A740926141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-ae468c5aa72ef270e3eb1967c5734393e55cc4b204f9931f26e6fa973961e6713</originalsourceid><addsrcrecordid>eNp9kU1rFEEQhgdRMEZv_oAGjzpJf38cl42ahQQvKuKlqfRUZ3uZnY7dE0L-vT3ZEBFE6lDFy1MvXf123VtGTxhT6pRTLk6Z1Ipz-6w7Ypqa3lrz43mbKdc95Vy_7F7VuqOUU-v4UfdzRS5h3uIe5hRgJJd5wJHkiTSNnN1PsE-hkhzJZurPc51bjxjm1Ij1No9YgJylilCR3KV5S75DCGmCBXjdvYgwVnzz2I-7b58-fl2f9xdfPm_Wq4s-SEPnHlBqGxSA4Ri5oSjwijltgjJCCidQqRDkFacyOidY5Bp1BGeE0wy1YeK42xx8hww7f1PSHsq9z5D8g5DLtYfSrhvRc-sss4wBCJQOlNM6oFXCBq3c4Bavdwevm5J_3WKd_S7flqk933NjGy8ct3-oa2imaYp5LhD2qQa_MpI6rplcvE7-QbUasH1qnjCmpv-18OGwEEqutWB8OoZRvwTsl4D9Y8ANf3_At2ka4C79n_4NQDCgeQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785963928</pqid></control><display><type>article</type><title>A Mathematical Model on the Dynamics of In-Host Infection Cholera Disease with Vaccination</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content (ProQuest)</source><creator>Jackob, Owade Kennedy ; Akinyi, Okaka ; Tireito, Frankline</creator><contributor>Cacace, Filippo ; Filippo Cacace</contributor><creatorcontrib>Jackob, Owade Kennedy ; Akinyi, Okaka ; Tireito, Frankline ; Cacace, Filippo ; Filippo Cacace</creatorcontrib><description>In this paper, a within-host cholera mathematical model has been developed using a system of ordinary differential equations incorporating vaccine efficacy. The formulated model considers cells in an already vaccinated individual with a vaccine whose efficacy is γ. The solutions of the model have been shown to be both positive and bounded hence well-posed. The vaccine basic reproduction number has been carried out using the next generation matrix approach and is given by R0V=γ/d+μ2 and R0V<1 if γ<d+μ2. Analysis of the model shows that infection free equilibriumIFE point is both locally and globally asymptotically stable when R0V<1 and infection equilibriumIE point is locally asymptotically stable when R0V>1. Furthermore, analysis of the model shows that R0V<1 is not sufficient enough to eradicate in-host cholera disease, hence the existence of backward bifurcation which is an indication as to why cholera disease is persistent. To highlight the relevance of vaccine efficacy, a numerical simulation of the model with respect to vaccination is carried out and shows that when the vaccine efficacy γ is high, there will be a lower infection rate of cells, hence the need to improve cholera vaccine efficacy.</description><identifier>ISSN: 1026-0226</identifier><identifier>EISSN: 1607-887X</identifier><identifier>DOI: 10.1155/2023/1465228</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Analysis ; Antibodies ; Asymptotic properties ; Cholera ; Differential equations ; Effectiveness ; Epidemics ; Health aspects ; Human body ; Inequality ; Infections ; Lymphocytes ; Mathematical models ; Numerical analysis ; Ordinary differential equations ; Pathogens ; Simulation methods ; Small intestine ; Vaccination ; Vaccines</subject><ispartof>Discrete dynamics in nature and society, 2023-03, Vol.2023, p.1-11</ispartof><rights>Copyright © 2023 Owade Kennedy Jackob et al.</rights><rights>COPYRIGHT 2023 John Wiley & Sons, Inc.</rights><rights>Copyright © 2023 Owade Kennedy Jackob et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-ae468c5aa72ef270e3eb1967c5734393e55cc4b204f9931f26e6fa973961e6713</citedby><cites>FETCH-LOGICAL-c470t-ae468c5aa72ef270e3eb1967c5734393e55cc4b204f9931f26e6fa973961e6713</cites><orcidid>0000-0002-4106-4022 ; 0000-0002-5812-7974 ; 0000-0003-2931-5914</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2785963928/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2785963928?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><contributor>Cacace, Filippo</contributor><contributor>Filippo Cacace</contributor><creatorcontrib>Jackob, Owade Kennedy</creatorcontrib><creatorcontrib>Akinyi, Okaka</creatorcontrib><creatorcontrib>Tireito, Frankline</creatorcontrib><title>A Mathematical Model on the Dynamics of In-Host Infection Cholera Disease with Vaccination</title><title>Discrete dynamics in nature and society</title><description>In this paper, a within-host cholera mathematical model has been developed using a system of ordinary differential equations incorporating vaccine efficacy. The formulated model considers cells in an already vaccinated individual with a vaccine whose efficacy is γ. The solutions of the model have been shown to be both positive and bounded hence well-posed. The vaccine basic reproduction number has been carried out using the next generation matrix approach and is given by R0V=γ/d+μ2 and R0V<1 if γ<d+μ2. Analysis of the model shows that infection free equilibriumIFE point is both locally and globally asymptotically stable when R0V<1 and infection equilibriumIE point is locally asymptotically stable when R0V>1. Furthermore, analysis of the model shows that R0V<1 is not sufficient enough to eradicate in-host cholera disease, hence the existence of backward bifurcation which is an indication as to why cholera disease is persistent. To highlight the relevance of vaccine efficacy, a numerical simulation of the model with respect to vaccination is carried out and shows that when the vaccine efficacy γ is high, there will be a lower infection rate of cells, hence the need to improve cholera vaccine efficacy.</description><subject>Analysis</subject><subject>Antibodies</subject><subject>Asymptotic properties</subject><subject>Cholera</subject><subject>Differential equations</subject><subject>Effectiveness</subject><subject>Epidemics</subject><subject>Health aspects</subject><subject>Human body</subject><subject>Inequality</subject><subject>Infections</subject><subject>Lymphocytes</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Ordinary differential equations</subject><subject>Pathogens</subject><subject>Simulation methods</subject><subject>Small intestine</subject><subject>Vaccination</subject><subject>Vaccines</subject><issn>1026-0226</issn><issn>1607-887X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1rFEEQhgdRMEZv_oAGjzpJf38cl42ahQQvKuKlqfRUZ3uZnY7dE0L-vT3ZEBFE6lDFy1MvXf123VtGTxhT6pRTLk6Z1Ipz-6w7Ypqa3lrz43mbKdc95Vy_7F7VuqOUU-v4UfdzRS5h3uIe5hRgJJd5wJHkiTSNnN1PsE-hkhzJZurPc51bjxjm1Ij1No9YgJylilCR3KV5S75DCGmCBXjdvYgwVnzz2I-7b58-fl2f9xdfPm_Wq4s-SEPnHlBqGxSA4Ri5oSjwijltgjJCCidQqRDkFacyOidY5Bp1BGeE0wy1YeK42xx8hww7f1PSHsq9z5D8g5DLtYfSrhvRc-sss4wBCJQOlNM6oFXCBq3c4Bavdwevm5J_3WKd_S7flqk933NjGy8ct3-oa2imaYp5LhD2qQa_MpI6rplcvE7-QbUasH1qnjCmpv-18OGwEEqutWB8OoZRvwTsl4D9Y8ANf3_At2ka4C79n_4NQDCgeQ</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Jackob, Owade Kennedy</creator><creator>Akinyi, Okaka</creator><creator>Tireito, Frankline</creator><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4106-4022</orcidid><orcidid>https://orcid.org/0000-0002-5812-7974</orcidid><orcidid>https://orcid.org/0000-0003-2931-5914</orcidid></search><sort><creationdate>20230301</creationdate><title>A Mathematical Model on the Dynamics of In-Host Infection Cholera Disease with Vaccination</title><author>Jackob, Owade Kennedy ; Akinyi, Okaka ; Tireito, Frankline</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-ae468c5aa72ef270e3eb1967c5734393e55cc4b204f9931f26e6fa973961e6713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Antibodies</topic><topic>Asymptotic properties</topic><topic>Cholera</topic><topic>Differential equations</topic><topic>Effectiveness</topic><topic>Epidemics</topic><topic>Health aspects</topic><topic>Human body</topic><topic>Inequality</topic><topic>Infections</topic><topic>Lymphocytes</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Ordinary differential equations</topic><topic>Pathogens</topic><topic>Simulation methods</topic><topic>Small intestine</topic><topic>Vaccination</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jackob, Owade Kennedy</creatorcontrib><creatorcontrib>Akinyi, Okaka</creatorcontrib><creatorcontrib>Tireito, Frankline</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Discrete dynamics in nature and society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jackob, Owade Kennedy</au><au>Akinyi, Okaka</au><au>Tireito, Frankline</au><au>Cacace, Filippo</au><au>Filippo Cacace</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Mathematical Model on the Dynamics of In-Host Infection Cholera Disease with Vaccination</atitle><jtitle>Discrete dynamics in nature and society</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>2023</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1026-0226</issn><eissn>1607-887X</eissn><abstract>In this paper, a within-host cholera mathematical model has been developed using a system of ordinary differential equations incorporating vaccine efficacy. The formulated model considers cells in an already vaccinated individual with a vaccine whose efficacy is γ. The solutions of the model have been shown to be both positive and bounded hence well-posed. The vaccine basic reproduction number has been carried out using the next generation matrix approach and is given by R0V=γ/d+μ2 and R0V<1 if γ<d+μ2. Analysis of the model shows that infection free equilibriumIFE point is both locally and globally asymptotically stable when R0V<1 and infection equilibriumIE point is locally asymptotically stable when R0V>1. Furthermore, analysis of the model shows that R0V<1 is not sufficient enough to eradicate in-host cholera disease, hence the existence of backward bifurcation which is an indication as to why cholera disease is persistent. To highlight the relevance of vaccine efficacy, a numerical simulation of the model with respect to vaccination is carried out and shows that when the vaccine efficacy γ is high, there will be a lower infection rate of cells, hence the need to improve cholera vaccine efficacy.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2023/1465228</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4106-4022</orcidid><orcidid>https://orcid.org/0000-0002-5812-7974</orcidid><orcidid>https://orcid.org/0000-0003-2931-5914</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1026-0226 |
ispartof | Discrete dynamics in nature and society, 2023-03, Vol.2023, p.1-11 |
issn | 1026-0226 1607-887X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_28981811aa3e49a5966ce8538c659d91 |
source | Wiley Online Library Open Access; Publicly Available Content (ProQuest) |
subjects | Analysis Antibodies Asymptotic properties Cholera Differential equations Effectiveness Epidemics Health aspects Human body Inequality Infections Lymphocytes Mathematical models Numerical analysis Ordinary differential equations Pathogens Simulation methods Small intestine Vaccination Vaccines |
title | A Mathematical Model on the Dynamics of In-Host Infection Cholera Disease with Vaccination |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A48%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Mathematical%20Model%20on%20the%20Dynamics%20of%20In-Host%20Infection%20Cholera%20Disease%20with%20Vaccination&rft.jtitle=Discrete%20dynamics%20in%20nature%20and%20society&rft.au=Jackob,%20Owade%20Kennedy&rft.date=2023-03-01&rft.volume=2023&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1026-0226&rft.eissn=1607-887X&rft_id=info:doi/10.1155/2023/1465228&rft_dat=%3Cgale_doaj_%3EA740926141%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-ae468c5aa72ef270e3eb1967c5734393e55cc4b204f9931f26e6fa973961e6713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2785963928&rft_id=info:pmid/&rft_galeid=A740926141&rfr_iscdi=true |