Loading…

A Mathematical Model on the Dynamics of In-Host Infection Cholera Disease with Vaccination

In this paper, a within-host cholera mathematical model has been developed using a system of ordinary differential equations incorporating vaccine efficacy. The formulated model considers cells in an already vaccinated individual with a vaccine whose efficacy is γ. The solutions of the model have be...

Full description

Saved in:
Bibliographic Details
Published in:Discrete dynamics in nature and society 2023-03, Vol.2023, p.1-11
Main Authors: Jackob, Owade Kennedy, Akinyi, Okaka, Tireito, Frankline
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c470t-ae468c5aa72ef270e3eb1967c5734393e55cc4b204f9931f26e6fa973961e6713
cites cdi_FETCH-LOGICAL-c470t-ae468c5aa72ef270e3eb1967c5734393e55cc4b204f9931f26e6fa973961e6713
container_end_page 11
container_issue
container_start_page 1
container_title Discrete dynamics in nature and society
container_volume 2023
creator Jackob, Owade Kennedy
Akinyi, Okaka
Tireito, Frankline
description In this paper, a within-host cholera mathematical model has been developed using a system of ordinary differential equations incorporating vaccine efficacy. The formulated model considers cells in an already vaccinated individual with a vaccine whose efficacy is γ. The solutions of the model have been shown to be both positive and bounded hence well-posed. The vaccine basic reproduction number has been carried out using the next generation matrix approach and is given by R0V=γ/d+μ2 and R0V
doi_str_mv 10.1155/2023/1465228
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_28981811aa3e49a5966ce8538c659d91</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A740926141</galeid><doaj_id>oai_doaj_org_article_28981811aa3e49a5966ce8538c659d91</doaj_id><sourcerecordid>A740926141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-ae468c5aa72ef270e3eb1967c5734393e55cc4b204f9931f26e6fa973961e6713</originalsourceid><addsrcrecordid>eNp9kU1rFEEQhgdRMEZv_oAGjzpJf38cl42ahQQvKuKlqfRUZ3uZnY7dE0L-vT3ZEBFE6lDFy1MvXf123VtGTxhT6pRTLk6Z1Ipz-6w7Ypqa3lrz43mbKdc95Vy_7F7VuqOUU-v4UfdzRS5h3uIe5hRgJJd5wJHkiTSNnN1PsE-hkhzJZurPc51bjxjm1Ij1No9YgJylilCR3KV5S75DCGmCBXjdvYgwVnzz2I-7b58-fl2f9xdfPm_Wq4s-SEPnHlBqGxSA4Ri5oSjwijltgjJCCidQqRDkFacyOidY5Bp1BGeE0wy1YeK42xx8hww7f1PSHsq9z5D8g5DLtYfSrhvRc-sss4wBCJQOlNM6oFXCBq3c4Bavdwevm5J_3WKd_S7flqk933NjGy8ct3-oa2imaYp5LhD2qQa_MpI6rplcvE7-QbUasH1qnjCmpv-18OGwEEqutWB8OoZRvwTsl4D9Y8ANf3_At2ka4C79n_4NQDCgeQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785963928</pqid></control><display><type>article</type><title>A Mathematical Model on the Dynamics of In-Host Infection Cholera Disease with Vaccination</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content (ProQuest)</source><creator>Jackob, Owade Kennedy ; Akinyi, Okaka ; Tireito, Frankline</creator><contributor>Cacace, Filippo ; Filippo Cacace</contributor><creatorcontrib>Jackob, Owade Kennedy ; Akinyi, Okaka ; Tireito, Frankline ; Cacace, Filippo ; Filippo Cacace</creatorcontrib><description>In this paper, a within-host cholera mathematical model has been developed using a system of ordinary differential equations incorporating vaccine efficacy. The formulated model considers cells in an already vaccinated individual with a vaccine whose efficacy is γ. The solutions of the model have been shown to be both positive and bounded hence well-posed. The vaccine basic reproduction number has been carried out using the next generation matrix approach and is given by R0V=γ/d+μ2 and R0V&lt;1 if γ&lt;d+μ2. Analysis of the model shows that infection free equilibriumIFE point is both locally and globally asymptotically stable when R0V&lt;1 and infection equilibriumIE point is locally asymptotically stable when R0V&gt;1. Furthermore, analysis of the model shows that R0V&lt;1 is not sufficient enough to eradicate in-host cholera disease, hence the existence of backward bifurcation which is an indication as to why cholera disease is persistent. To highlight the relevance of vaccine efficacy, a numerical simulation of the model with respect to vaccination is carried out and shows that when the vaccine efficacy γ is high, there will be a lower infection rate of cells, hence the need to improve cholera vaccine efficacy.</description><identifier>ISSN: 1026-0226</identifier><identifier>EISSN: 1607-887X</identifier><identifier>DOI: 10.1155/2023/1465228</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Analysis ; Antibodies ; Asymptotic properties ; Cholera ; Differential equations ; Effectiveness ; Epidemics ; Health aspects ; Human body ; Inequality ; Infections ; Lymphocytes ; Mathematical models ; Numerical analysis ; Ordinary differential equations ; Pathogens ; Simulation methods ; Small intestine ; Vaccination ; Vaccines</subject><ispartof>Discrete dynamics in nature and society, 2023-03, Vol.2023, p.1-11</ispartof><rights>Copyright © 2023 Owade Kennedy Jackob et al.</rights><rights>COPYRIGHT 2023 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2023 Owade Kennedy Jackob et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-ae468c5aa72ef270e3eb1967c5734393e55cc4b204f9931f26e6fa973961e6713</citedby><cites>FETCH-LOGICAL-c470t-ae468c5aa72ef270e3eb1967c5734393e55cc4b204f9931f26e6fa973961e6713</cites><orcidid>0000-0002-4106-4022 ; 0000-0002-5812-7974 ; 0000-0003-2931-5914</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2785963928/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2785963928?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><contributor>Cacace, Filippo</contributor><contributor>Filippo Cacace</contributor><creatorcontrib>Jackob, Owade Kennedy</creatorcontrib><creatorcontrib>Akinyi, Okaka</creatorcontrib><creatorcontrib>Tireito, Frankline</creatorcontrib><title>A Mathematical Model on the Dynamics of In-Host Infection Cholera Disease with Vaccination</title><title>Discrete dynamics in nature and society</title><description>In this paper, a within-host cholera mathematical model has been developed using a system of ordinary differential equations incorporating vaccine efficacy. The formulated model considers cells in an already vaccinated individual with a vaccine whose efficacy is γ. The solutions of the model have been shown to be both positive and bounded hence well-posed. The vaccine basic reproduction number has been carried out using the next generation matrix approach and is given by R0V=γ/d+μ2 and R0V&lt;1 if γ&lt;d+μ2. Analysis of the model shows that infection free equilibriumIFE point is both locally and globally asymptotically stable when R0V&lt;1 and infection equilibriumIE point is locally asymptotically stable when R0V&gt;1. Furthermore, analysis of the model shows that R0V&lt;1 is not sufficient enough to eradicate in-host cholera disease, hence the existence of backward bifurcation which is an indication as to why cholera disease is persistent. To highlight the relevance of vaccine efficacy, a numerical simulation of the model with respect to vaccination is carried out and shows that when the vaccine efficacy γ is high, there will be a lower infection rate of cells, hence the need to improve cholera vaccine efficacy.</description><subject>Analysis</subject><subject>Antibodies</subject><subject>Asymptotic properties</subject><subject>Cholera</subject><subject>Differential equations</subject><subject>Effectiveness</subject><subject>Epidemics</subject><subject>Health aspects</subject><subject>Human body</subject><subject>Inequality</subject><subject>Infections</subject><subject>Lymphocytes</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Ordinary differential equations</subject><subject>Pathogens</subject><subject>Simulation methods</subject><subject>Small intestine</subject><subject>Vaccination</subject><subject>Vaccines</subject><issn>1026-0226</issn><issn>1607-887X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1rFEEQhgdRMEZv_oAGjzpJf38cl42ahQQvKuKlqfRUZ3uZnY7dE0L-vT3ZEBFE6lDFy1MvXf123VtGTxhT6pRTLk6Z1Ipz-6w7Ypqa3lrz43mbKdc95Vy_7F7VuqOUU-v4UfdzRS5h3uIe5hRgJJd5wJHkiTSNnN1PsE-hkhzJZurPc51bjxjm1Ij1No9YgJylilCR3KV5S75DCGmCBXjdvYgwVnzz2I-7b58-fl2f9xdfPm_Wq4s-SEPnHlBqGxSA4Ri5oSjwijltgjJCCidQqRDkFacyOidY5Bp1BGeE0wy1YeK42xx8hww7f1PSHsq9z5D8g5DLtYfSrhvRc-sss4wBCJQOlNM6oFXCBq3c4Bavdwevm5J_3WKd_S7flqk933NjGy8ct3-oa2imaYp5LhD2qQa_MpI6rplcvE7-QbUasH1qnjCmpv-18OGwEEqutWB8OoZRvwTsl4D9Y8ANf3_At2ka4C79n_4NQDCgeQ</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Jackob, Owade Kennedy</creator><creator>Akinyi, Okaka</creator><creator>Tireito, Frankline</creator><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4106-4022</orcidid><orcidid>https://orcid.org/0000-0002-5812-7974</orcidid><orcidid>https://orcid.org/0000-0003-2931-5914</orcidid></search><sort><creationdate>20230301</creationdate><title>A Mathematical Model on the Dynamics of In-Host Infection Cholera Disease with Vaccination</title><author>Jackob, Owade Kennedy ; Akinyi, Okaka ; Tireito, Frankline</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-ae468c5aa72ef270e3eb1967c5734393e55cc4b204f9931f26e6fa973961e6713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Antibodies</topic><topic>Asymptotic properties</topic><topic>Cholera</topic><topic>Differential equations</topic><topic>Effectiveness</topic><topic>Epidemics</topic><topic>Health aspects</topic><topic>Human body</topic><topic>Inequality</topic><topic>Infections</topic><topic>Lymphocytes</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Ordinary differential equations</topic><topic>Pathogens</topic><topic>Simulation methods</topic><topic>Small intestine</topic><topic>Vaccination</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jackob, Owade Kennedy</creatorcontrib><creatorcontrib>Akinyi, Okaka</creatorcontrib><creatorcontrib>Tireito, Frankline</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Discrete dynamics in nature and society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jackob, Owade Kennedy</au><au>Akinyi, Okaka</au><au>Tireito, Frankline</au><au>Cacace, Filippo</au><au>Filippo Cacace</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Mathematical Model on the Dynamics of In-Host Infection Cholera Disease with Vaccination</atitle><jtitle>Discrete dynamics in nature and society</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>2023</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1026-0226</issn><eissn>1607-887X</eissn><abstract>In this paper, a within-host cholera mathematical model has been developed using a system of ordinary differential equations incorporating vaccine efficacy. The formulated model considers cells in an already vaccinated individual with a vaccine whose efficacy is γ. The solutions of the model have been shown to be both positive and bounded hence well-posed. The vaccine basic reproduction number has been carried out using the next generation matrix approach and is given by R0V=γ/d+μ2 and R0V&lt;1 if γ&lt;d+μ2. Analysis of the model shows that infection free equilibriumIFE point is both locally and globally asymptotically stable when R0V&lt;1 and infection equilibriumIE point is locally asymptotically stable when R0V&gt;1. Furthermore, analysis of the model shows that R0V&lt;1 is not sufficient enough to eradicate in-host cholera disease, hence the existence of backward bifurcation which is an indication as to why cholera disease is persistent. To highlight the relevance of vaccine efficacy, a numerical simulation of the model with respect to vaccination is carried out and shows that when the vaccine efficacy γ is high, there will be a lower infection rate of cells, hence the need to improve cholera vaccine efficacy.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2023/1465228</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4106-4022</orcidid><orcidid>https://orcid.org/0000-0002-5812-7974</orcidid><orcidid>https://orcid.org/0000-0003-2931-5914</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1026-0226
ispartof Discrete dynamics in nature and society, 2023-03, Vol.2023, p.1-11
issn 1026-0226
1607-887X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_28981811aa3e49a5966ce8538c659d91
source Wiley Online Library Open Access; Publicly Available Content (ProQuest)
subjects Analysis
Antibodies
Asymptotic properties
Cholera
Differential equations
Effectiveness
Epidemics
Health aspects
Human body
Inequality
Infections
Lymphocytes
Mathematical models
Numerical analysis
Ordinary differential equations
Pathogens
Simulation methods
Small intestine
Vaccination
Vaccines
title A Mathematical Model on the Dynamics of In-Host Infection Cholera Disease with Vaccination
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A48%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Mathematical%20Model%20on%20the%20Dynamics%20of%20In-Host%20Infection%20Cholera%20Disease%20with%20Vaccination&rft.jtitle=Discrete%20dynamics%20in%20nature%20and%20society&rft.au=Jackob,%20Owade%20Kennedy&rft.date=2023-03-01&rft.volume=2023&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1026-0226&rft.eissn=1607-887X&rft_id=info:doi/10.1155/2023/1465228&rft_dat=%3Cgale_doaj_%3EA740926141%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-ae468c5aa72ef270e3eb1967c5734393e55cc4b204f9931f26e6fa973961e6713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2785963928&rft_id=info:pmid/&rft_galeid=A740926141&rfr_iscdi=true