Loading…
In-situ surface study on the mechanism of high-strain-rate superplasticity in an Al–Cu–Li alloy
An elongation of 880 % was obtained at a high initial strain rate of 1 × 10−2 s−1 at 470 °C in an Al–Cu–Li alloy produced by traditional thermomechanical-processing. The high-strain-rate superplastic deformation mechanisms during the whole deformation process were studied by SEM, EBSD, and FIB techn...
Saved in:
Published in: | Journal of materials research and technology 2024-01, Vol.28, p.2815-2818 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An elongation of 880 % was obtained at a high initial strain rate of 1 × 10−2 s−1 at 470 °C in an Al–Cu–Li alloy produced by traditional thermomechanical-processing. The high-strain-rate superplastic deformation mechanisms during the whole deformation process were studied by SEM, EBSD, and FIB techniques. High-resolution surface studies employing focused ion beams reveal that grain boundary sliding accounts for up to 70 % of the overall strain. Furthermore, this phenomenon consistently maintains a high level, with a minimum value of 56 %, throughout the entire deformation process. Meanwhile, diffusion creep plays an accommodating role and stimulates the formation of striated bands. |
---|---|
ISSN: | 2238-7854 |
DOI: | 10.1016/j.jmrt.2023.12.204 |