Loading…
Tri-Phase Implementation of an Innovative Fuzzy Logic Approach for Decision-Making
This paper proposes a novel approach to decision-making based on a three-phase application of a new fuzzy logic model that embraces the principles of symmetry by balancing competing objectives in data collection and analysis. Our study, which employs a three-stage stratified random sample strategy w...
Saved in:
Published in: | Symmetry (Basel) 2024-08, Vol.16 (8), p.994 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c252t-8ddf27d8269436fb6f273548eef8042f303981e8bb1a307f099c37defc912973 |
container_end_page | |
container_issue | 8 |
container_start_page | 994 |
container_title | Symmetry (Basel) |
container_volume | 16 |
creator | Tarray, Tanveer Ahmad Khaki, Zahid Gulzar Ganie, Zahoor Ahmad Sultan, Adil Danish, Faizan Albalawi, Olayan |
description | This paper proposes a novel approach to decision-making based on a three-phase application of a new fuzzy logic model that embraces the principles of symmetry by balancing competing objectives in data collection and analysis. Our study, which employs a three-stage stratified random sample strategy with a randomized response technique, addresses the critical challenges of cost management and volatility reduction. Using the alpha-cut method, our model creates an effective allocation strategy that finds a balance between cost constraints and variance reduction objectives. We use numerical examples from real-world scenarios to demonstrate our approach’s durability and practicality. Our revolutionary technique maintains data quality and cost-effectiveness while offering a game-changing answer to sensitive information acquisition concerns. By combining randomized response techniques and fuzzy logic, this study establishes a new standard for decision-making models that prioritizes both data-gathering precision and privacy preservation, encapsulating the essential principle of symmetry in balancing competing aims. |
doi_str_mv | 10.3390/sym16080994 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_28d24b37cbe2406ab973194301a6728d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_28d24b37cbe2406ab973194301a6728d</doaj_id><sourcerecordid>3098178563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-8ddf27d8269436fb6f273548eef8042f303981e8bb1a307f099c37defc912973</originalsourceid><addsrcrecordid>eNpNUdtKAzEQDaJgqX3yBwI-ymouu0n2sdTbQkWRvodsNmlTu5s12Rbarzdakc7LnLmdmcMAcI3RHaUluo_7FjMkUFnmZ2BEEKeZSPj8BF-CSYxrlKxARc7QCHwsgsveVyoaWLX9xrSmG9TgfAe9haqDVdf5XUrsDHzaHg57OPdLp-G074NXegWtD_DBaBfTSPaqPl23vAIXVm2imfz5MVg8PS5mL9n87bmaTeeZJgUZMtE0lvBGEFbmlNmapYgWuTDGCpQTSxEtBTairrGiiNukS1PeGKtLTEpOx6A60jZerWUfXKvCXnrl5G_Ch6VUYXB6YyQRDclrynVtSI6YqtM4TlsRVoynYuK6OXIlVV9bEwe59tvQpeslRekKLgpGU9ftsUsHH2Mw9n8rRvLnBfLkBfQbOvR3Ug</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098178563</pqid></control><display><type>article</type><title>Tri-Phase Implementation of an Innovative Fuzzy Logic Approach for Decision-Making</title><source>Publicly Available Content Database</source><source>Coronavirus Research Database</source><creator>Tarray, Tanveer Ahmad ; Khaki, Zahid Gulzar ; Ganie, Zahoor Ahmad ; Sultan, Adil ; Danish, Faizan ; Albalawi, Olayan</creator><creatorcontrib>Tarray, Tanveer Ahmad ; Khaki, Zahid Gulzar ; Ganie, Zahoor Ahmad ; Sultan, Adil ; Danish, Faizan ; Albalawi, Olayan</creatorcontrib><description>This paper proposes a novel approach to decision-making based on a three-phase application of a new fuzzy logic model that embraces the principles of symmetry by balancing competing objectives in data collection and analysis. Our study, which employs a three-stage stratified random sample strategy with a randomized response technique, addresses the critical challenges of cost management and volatility reduction. Using the alpha-cut method, our model creates an effective allocation strategy that finds a balance between cost constraints and variance reduction objectives. We use numerical examples from real-world scenarios to demonstrate our approach’s durability and practicality. Our revolutionary technique maintains data quality and cost-effectiveness while offering a game-changing answer to sensitive information acquisition concerns. By combining randomized response techniques and fuzzy logic, this study establishes a new standard for decision-making models that prioritizes both data-gathering precision and privacy preservation, encapsulating the essential principle of symmetry in balancing competing aims.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym16080994</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Balancing ; Cost analysis ; Cost effectiveness ; Costs ; Data collection ; Data mining ; Data processing ; Decision making ; Design ; Fuzzy logic ; optimal allocation ; Optimization techniques ; Polls & surveys ; Privacy ; Probability ; sensitive attributes ; Statistical inference ; Strategy ; stratified sampling ; Symmetry ; Systems design ; tri-phase implementation</subject><ispartof>Symmetry (Basel), 2024-08, Vol.16 (8), p.994</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-8ddf27d8269436fb6f273548eef8042f303981e8bb1a307f099c37defc912973</cites><orcidid>0000-0003-4773-715X ; 0000-0002-0476-9744 ; 0000-0002-7772-0386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3098178563/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3098178563?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,38516,43895,44590,74412,75126</link.rule.ids></links><search><creatorcontrib>Tarray, Tanveer Ahmad</creatorcontrib><creatorcontrib>Khaki, Zahid Gulzar</creatorcontrib><creatorcontrib>Ganie, Zahoor Ahmad</creatorcontrib><creatorcontrib>Sultan, Adil</creatorcontrib><creatorcontrib>Danish, Faizan</creatorcontrib><creatorcontrib>Albalawi, Olayan</creatorcontrib><title>Tri-Phase Implementation of an Innovative Fuzzy Logic Approach for Decision-Making</title><title>Symmetry (Basel)</title><description>This paper proposes a novel approach to decision-making based on a three-phase application of a new fuzzy logic model that embraces the principles of symmetry by balancing competing objectives in data collection and analysis. Our study, which employs a three-stage stratified random sample strategy with a randomized response technique, addresses the critical challenges of cost management and volatility reduction. Using the alpha-cut method, our model creates an effective allocation strategy that finds a balance between cost constraints and variance reduction objectives. We use numerical examples from real-world scenarios to demonstrate our approach’s durability and practicality. Our revolutionary technique maintains data quality and cost-effectiveness while offering a game-changing answer to sensitive information acquisition concerns. By combining randomized response techniques and fuzzy logic, this study establishes a new standard for decision-making models that prioritizes both data-gathering precision and privacy preservation, encapsulating the essential principle of symmetry in balancing competing aims.</description><subject>Balancing</subject><subject>Cost analysis</subject><subject>Cost effectiveness</subject><subject>Costs</subject><subject>Data collection</subject><subject>Data mining</subject><subject>Data processing</subject><subject>Decision making</subject><subject>Design</subject><subject>Fuzzy logic</subject><subject>optimal allocation</subject><subject>Optimization techniques</subject><subject>Polls & surveys</subject><subject>Privacy</subject><subject>Probability</subject><subject>sensitive attributes</subject><subject>Statistical inference</subject><subject>Strategy</subject><subject>stratified sampling</subject><subject>Symmetry</subject><subject>Systems design</subject><subject>tri-phase implementation</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtKAzEQDaJgqX3yBwI-ymouu0n2sdTbQkWRvodsNmlTu5s12Rbarzdakc7LnLmdmcMAcI3RHaUluo_7FjMkUFnmZ2BEEKeZSPj8BF-CSYxrlKxARc7QCHwsgsveVyoaWLX9xrSmG9TgfAe9haqDVdf5XUrsDHzaHg57OPdLp-G074NXegWtD_DBaBfTSPaqPl23vAIXVm2imfz5MVg8PS5mL9n87bmaTeeZJgUZMtE0lvBGEFbmlNmapYgWuTDGCpQTSxEtBTairrGiiNukS1PeGKtLTEpOx6A60jZerWUfXKvCXnrl5G_Ch6VUYXB6YyQRDclrynVtSI6YqtM4TlsRVoynYuK6OXIlVV9bEwe59tvQpeslRekKLgpGU9ftsUsHH2Mw9n8rRvLnBfLkBfQbOvR3Ug</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Tarray, Tanveer Ahmad</creator><creator>Khaki, Zahid Gulzar</creator><creator>Ganie, Zahoor Ahmad</creator><creator>Sultan, Adil</creator><creator>Danish, Faizan</creator><creator>Albalawi, Olayan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4773-715X</orcidid><orcidid>https://orcid.org/0000-0002-0476-9744</orcidid><orcidid>https://orcid.org/0000-0002-7772-0386</orcidid></search><sort><creationdate>20240801</creationdate><title>Tri-Phase Implementation of an Innovative Fuzzy Logic Approach for Decision-Making</title><author>Tarray, Tanveer Ahmad ; Khaki, Zahid Gulzar ; Ganie, Zahoor Ahmad ; Sultan, Adil ; Danish, Faizan ; Albalawi, Olayan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-8ddf27d8269436fb6f273548eef8042f303981e8bb1a307f099c37defc912973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Balancing</topic><topic>Cost analysis</topic><topic>Cost effectiveness</topic><topic>Costs</topic><topic>Data collection</topic><topic>Data mining</topic><topic>Data processing</topic><topic>Decision making</topic><topic>Design</topic><topic>Fuzzy logic</topic><topic>optimal allocation</topic><topic>Optimization techniques</topic><topic>Polls & surveys</topic><topic>Privacy</topic><topic>Probability</topic><topic>sensitive attributes</topic><topic>Statistical inference</topic><topic>Strategy</topic><topic>stratified sampling</topic><topic>Symmetry</topic><topic>Systems design</topic><topic>tri-phase implementation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tarray, Tanveer Ahmad</creatorcontrib><creatorcontrib>Khaki, Zahid Gulzar</creatorcontrib><creatorcontrib>Ganie, Zahoor Ahmad</creatorcontrib><creatorcontrib>Sultan, Adil</creatorcontrib><creatorcontrib>Danish, Faizan</creatorcontrib><creatorcontrib>Albalawi, Olayan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tarray, Tanveer Ahmad</au><au>Khaki, Zahid Gulzar</au><au>Ganie, Zahoor Ahmad</au><au>Sultan, Adil</au><au>Danish, Faizan</au><au>Albalawi, Olayan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tri-Phase Implementation of an Innovative Fuzzy Logic Approach for Decision-Making</atitle><jtitle>Symmetry (Basel)</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>16</volume><issue>8</issue><spage>994</spage><pages>994-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>This paper proposes a novel approach to decision-making based on a three-phase application of a new fuzzy logic model that embraces the principles of symmetry by balancing competing objectives in data collection and analysis. Our study, which employs a three-stage stratified random sample strategy with a randomized response technique, addresses the critical challenges of cost management and volatility reduction. Using the alpha-cut method, our model creates an effective allocation strategy that finds a balance between cost constraints and variance reduction objectives. We use numerical examples from real-world scenarios to demonstrate our approach’s durability and practicality. Our revolutionary technique maintains data quality and cost-effectiveness while offering a game-changing answer to sensitive information acquisition concerns. By combining randomized response techniques and fuzzy logic, this study establishes a new standard for decision-making models that prioritizes both data-gathering precision and privacy preservation, encapsulating the essential principle of symmetry in balancing competing aims.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym16080994</doi><orcidid>https://orcid.org/0000-0003-4773-715X</orcidid><orcidid>https://orcid.org/0000-0002-0476-9744</orcidid><orcidid>https://orcid.org/0000-0002-7772-0386</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-8994 |
ispartof | Symmetry (Basel), 2024-08, Vol.16 (8), p.994 |
issn | 2073-8994 2073-8994 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_28d24b37cbe2406ab973194301a6728d |
source | Publicly Available Content Database; Coronavirus Research Database |
subjects | Balancing Cost analysis Cost effectiveness Costs Data collection Data mining Data processing Decision making Design Fuzzy logic optimal allocation Optimization techniques Polls & surveys Privacy Probability sensitive attributes Statistical inference Strategy stratified sampling Symmetry Systems design tri-phase implementation |
title | Tri-Phase Implementation of an Innovative Fuzzy Logic Approach for Decision-Making |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A16%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tri-Phase%20Implementation%20of%20an%20Innovative%20Fuzzy%20Logic%20Approach%20for%20Decision-Making&rft.jtitle=Symmetry%20(Basel)&rft.au=Tarray,%20Tanveer%20Ahmad&rft.date=2024-08-01&rft.volume=16&rft.issue=8&rft.spage=994&rft.pages=994-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym16080994&rft_dat=%3Cproquest_doaj_%3E3098178563%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c252t-8ddf27d8269436fb6f273548eef8042f303981e8bb1a307f099c37defc912973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3098178563&rft_id=info:pmid/&rfr_iscdi=true |