Loading…
Erythropoietin promotes hippocampal mitochondrial function and enhances cognition in mice
Erythropoietin (EPO) improves neuronal mitochondrial function and cognition in adults after brain injury and in those afflicted by psychiatric disorders. However, the influence of EPO on mitochondria and cognition during development remains unexplored. We previously observed that EPO stimulates hipp...
Saved in:
Published in: | Communications biology 2021-08, Vol.4 (1), p.938-938, Article 938 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Erythropoietin (EPO) improves neuronal mitochondrial function and cognition in adults after brain injury and in those afflicted by psychiatric disorders. However, the influence of EPO on mitochondria and cognition during development remains unexplored. We previously observed that EPO stimulates hippocampal-specific neuronal maturation and synaptogenesis early in postnatal development in mice. Here we show that EPO promotes mitochondrial respiration in developing postnatal hippocampus by increasing mitochondrial content and enhancing cellular respiratory potential. Ultrastructurally, mitochondria profiles and total vesicle content were greater in presynaptic axon terminals, suggesting that EPO enhances oxidative metabolism and synaptic transmission capabilities. Behavioural tests of hippocampus-dependent memory at early adulthood, showed that EPO improves spatial and short-term memory. Collectively, we identify a role for EPO in the murine postnatal hippocampus by promoting mitochondrial function throughout early postnatal development, which corresponds to enhanced cognition by early adulthood.
Robert Jacobs, Mostafa Aboouf, et al. examined the effect of erythropoietin (EPO) in hippocampal mitochondrial function and memory in two mouse models: one overexpressing EPO in the brain, and juvenile mice treated during three days with a high dose of intraperitoneal EPO. Their results suggest that erythropoietin in the neonatal brain may impact spatial memory by increasing mitochondrial content. |
---|---|
ISSN: | 2399-3642 2399-3642 |
DOI: | 10.1038/s42003-021-02465-8 |