Loading…

Endogenous clock-mediated regulation of intracellular oxygen dynamics is essential for diazotrophic growth of unicellular cyanobacteria

The discovery of nitrogen fixation in unicellular cyanobacteria provided the first clues for the existence of a circadian clock in prokaryotes. However, recalcitrance to genetic manipulation barred their use as model systems for deciphering the clock function. Here, we explore the circadian clock in...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2024-05, Vol.15 (1), p.3712-3712, Article 3712
Main Authors: Bandyopadhyay, Anindita, Sengupta, Annesha, Elvitigala, Thanura, Pakrasi, Himadri B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c436t-7b65df8b02d92da6b052fca744b9599e1025e4f484610b66a804ab628bc30ed3
container_end_page 3712
container_issue 1
container_start_page 3712
container_title Nature communications
container_volume 15
creator Bandyopadhyay, Anindita
Sengupta, Annesha
Elvitigala, Thanura
Pakrasi, Himadri B.
description The discovery of nitrogen fixation in unicellular cyanobacteria provided the first clues for the existence of a circadian clock in prokaryotes. However, recalcitrance to genetic manipulation barred their use as model systems for deciphering the clock function. Here, we explore the circadian clock in the now genetically amenable Cyanothece 51142, a unicellular, nitrogen-fixing cyanobacterium. Unlike non-diazotrophic clock models, Cyanothece 51142 exhibits conspicuous self-sustained rhythms in various discernable phenotypes, offering a platform to directly study the effects of the clock on the physiology of an organism. Deletion of kaiA , an essential clock component in the cyanobacterial system, impacted the regulation of oxygen cycling and hindered nitrogenase activity. Our findings imply a role for the KaiA component of the clock in regulating the intracellular oxygen dynamics in unicellular diazotrophic cyanobacteria and suggest that its addition to the KaiBC clock was likely an adaptive strategy that ensured optimal nitrogen fixation as microbes evolved from an anaerobic to an aerobic atmosphere under nitrogen constraints. The authors investigate the circadian clock in a unicellular diazotrophic cyanobacterium. They demonstrate the role of the clock in regulating intracellular oxygen dynamics, a necessity to accommodate nitrogen fixation in an oxygen-producing cell.
doi_str_mv 10.1038/s41467-024-48039-0
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_28f776ae83374a11a1e22da3147d1281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_28f776ae83374a11a1e22da3147d1281</doaj_id><sourcerecordid>3050934815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-7b65df8b02d92da6b052fca744b9599e1025e4f484610b66a804ab628bc30ed3</originalsourceid><addsrcrecordid>eNp9kc9uFSEUxidG0za1L9CFIXHjZpR_w8DSNK02aeKme3IGmCnXuXAFJnp9AV-73E69GheygRy-73c4fE1zSfB7gpn8kDnhom8x5S2XmKkWv2jOKOakJT1lL_86nzYXOW9wXUwRyflJc8qkUL0S7Kz5dR1snFyIS0ZmjuZru3XWQ3EWJTctMxQfA4oj8qEkMG6eay2h-GNfTcjuA2y9ychn5HJ2oXiY0RgTqoyfsaS4e_AGTSl-Lw8HyhL8kWH2EOIAprjk4XXzaoQ5u4vn_by5v7m-v_rc3n35dHv18a41nInS9oPo7CgHTK2iFsSAOzoa6DkfVKeUI5h2jo9cckHwIARIzGEQVA6GYWfZeXO7Ym2Ejd4lv4W01xG8firENGlIxZvZaSrHvhfgJGM9B0KAOFpbMsJ7S6gklfVuZe1S_La4XPTW58N0EFz9Ts1whxXjknRV-vYf6SYuKdRBq4orxSjDByBdVSbFnJMbjw8kWB9C12vouoaun0LXuJrePKOXoUZ3tPyOuArYKsj1Kkwu_en9H-wjxjy4-g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049932301</pqid></control><display><type>article</type><title>Endogenous clock-mediated regulation of intracellular oxygen dynamics is essential for diazotrophic growth of unicellular cyanobacteria</title><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - Connect here FIRST to enable access</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Bandyopadhyay, Anindita ; Sengupta, Annesha ; Elvitigala, Thanura ; Pakrasi, Himadri B.</creator><creatorcontrib>Bandyopadhyay, Anindita ; Sengupta, Annesha ; Elvitigala, Thanura ; Pakrasi, Himadri B.</creatorcontrib><description>The discovery of nitrogen fixation in unicellular cyanobacteria provided the first clues for the existence of a circadian clock in prokaryotes. However, recalcitrance to genetic manipulation barred their use as model systems for deciphering the clock function. Here, we explore the circadian clock in the now genetically amenable Cyanothece 51142, a unicellular, nitrogen-fixing cyanobacterium. Unlike non-diazotrophic clock models, Cyanothece 51142 exhibits conspicuous self-sustained rhythms in various discernable phenotypes, offering a platform to directly study the effects of the clock on the physiology of an organism. Deletion of kaiA , an essential clock component in the cyanobacterial system, impacted the regulation of oxygen cycling and hindered nitrogenase activity. Our findings imply a role for the KaiA component of the clock in regulating the intracellular oxygen dynamics in unicellular diazotrophic cyanobacteria and suggest that its addition to the KaiBC clock was likely an adaptive strategy that ensured optimal nitrogen fixation as microbes evolved from an anaerobic to an aerobic atmosphere under nitrogen constraints. The authors investigate the circadian clock in a unicellular diazotrophic cyanobacterium. They demonstrate the role of the clock in regulating intracellular oxygen dynamics, a necessity to accommodate nitrogen fixation in an oxygen-producing cell.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-48039-0</identifier><identifier>PMID: 38697963</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/77 ; 42/41 ; 42/44 ; 631/326/41 ; 631/326/88 ; 631/80/105 ; 82/1 ; 82/29 ; Atmospheric models ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biological clocks ; Circadian Clocks - genetics ; Circadian Clocks - physiology ; Circadian rhythm ; Circadian Rhythm Signaling Peptides and Proteins - genetics ; Circadian Rhythm Signaling Peptides and Proteins - metabolism ; Circadian rhythms ; Cyanobacteria ; Cyanobacteria - genetics ; Cyanobacteria - metabolism ; Cyanothece ; Cyanothece - genetics ; Cyanothece - metabolism ; Gene Expression Regulation, Bacterial ; Humanities and Social Sciences ; Intracellular ; multidisciplinary ; Nitrogen ; Nitrogen Fixation ; Nitrogenase ; Nitrogenase - genetics ; Nitrogenase - metabolism ; Nitrogenation ; Oxygen ; Oxygen - metabolism ; Phenotypes ; Prokaryotes ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2024-05, Vol.15 (1), p.3712-3712, Article 3712</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c436t-7b65df8b02d92da6b052fca744b9599e1025e4f484610b66a804ab628bc30ed3</cites><orcidid>0009-0008-7390-8921 ; 0000-0001-8240-2123 ; 0000-0002-9137-4379 ; 0000-0002-5713-6019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3049932301/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3049932301?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,36990,44566,75096</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38697963$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bandyopadhyay, Anindita</creatorcontrib><creatorcontrib>Sengupta, Annesha</creatorcontrib><creatorcontrib>Elvitigala, Thanura</creatorcontrib><creatorcontrib>Pakrasi, Himadri B.</creatorcontrib><title>Endogenous clock-mediated regulation of intracellular oxygen dynamics is essential for diazotrophic growth of unicellular cyanobacteria</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The discovery of nitrogen fixation in unicellular cyanobacteria provided the first clues for the existence of a circadian clock in prokaryotes. However, recalcitrance to genetic manipulation barred their use as model systems for deciphering the clock function. Here, we explore the circadian clock in the now genetically amenable Cyanothece 51142, a unicellular, nitrogen-fixing cyanobacterium. Unlike non-diazotrophic clock models, Cyanothece 51142 exhibits conspicuous self-sustained rhythms in various discernable phenotypes, offering a platform to directly study the effects of the clock on the physiology of an organism. Deletion of kaiA , an essential clock component in the cyanobacterial system, impacted the regulation of oxygen cycling and hindered nitrogenase activity. Our findings imply a role for the KaiA component of the clock in regulating the intracellular oxygen dynamics in unicellular diazotrophic cyanobacteria and suggest that its addition to the KaiBC clock was likely an adaptive strategy that ensured optimal nitrogen fixation as microbes evolved from an anaerobic to an aerobic atmosphere under nitrogen constraints. The authors investigate the circadian clock in a unicellular diazotrophic cyanobacterium. They demonstrate the role of the clock in regulating intracellular oxygen dynamics, a necessity to accommodate nitrogen fixation in an oxygen-producing cell.</description><subject>38/77</subject><subject>42/41</subject><subject>42/44</subject><subject>631/326/41</subject><subject>631/326/88</subject><subject>631/80/105</subject><subject>82/1</subject><subject>82/29</subject><subject>Atmospheric models</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biological clocks</subject><subject>Circadian Clocks - genetics</subject><subject>Circadian Clocks - physiology</subject><subject>Circadian rhythm</subject><subject>Circadian Rhythm Signaling Peptides and Proteins - genetics</subject><subject>Circadian Rhythm Signaling Peptides and Proteins - metabolism</subject><subject>Circadian rhythms</subject><subject>Cyanobacteria</subject><subject>Cyanobacteria - genetics</subject><subject>Cyanobacteria - metabolism</subject><subject>Cyanothece</subject><subject>Cyanothece - genetics</subject><subject>Cyanothece - metabolism</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Humanities and Social Sciences</subject><subject>Intracellular</subject><subject>multidisciplinary</subject><subject>Nitrogen</subject><subject>Nitrogen Fixation</subject><subject>Nitrogenase</subject><subject>Nitrogenase - genetics</subject><subject>Nitrogenase - metabolism</subject><subject>Nitrogenation</subject><subject>Oxygen</subject><subject>Oxygen - metabolism</subject><subject>Phenotypes</subject><subject>Prokaryotes</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc9uFSEUxidG0za1L9CFIXHjZpR_w8DSNK02aeKme3IGmCnXuXAFJnp9AV-73E69GheygRy-73c4fE1zSfB7gpn8kDnhom8x5S2XmKkWv2jOKOakJT1lL_86nzYXOW9wXUwRyflJc8qkUL0S7Kz5dR1snFyIS0ZmjuZru3XWQ3EWJTctMxQfA4oj8qEkMG6eay2h-GNfTcjuA2y9ychn5HJ2oXiY0RgTqoyfsaS4e_AGTSl-Lw8HyhL8kWH2EOIAprjk4XXzaoQ5u4vn_by5v7m-v_rc3n35dHv18a41nInS9oPo7CgHTK2iFsSAOzoa6DkfVKeUI5h2jo9cckHwIARIzGEQVA6GYWfZeXO7Ym2Ejd4lv4W01xG8firENGlIxZvZaSrHvhfgJGM9B0KAOFpbMsJ7S6gklfVuZe1S_La4XPTW58N0EFz9Ts1whxXjknRV-vYf6SYuKdRBq4orxSjDByBdVSbFnJMbjw8kWB9C12vouoaun0LXuJrePKOXoUZ3tPyOuArYKsj1Kkwu_en9H-wjxjy4-g</recordid><startdate>20240502</startdate><enddate>20240502</enddate><creator>Bandyopadhyay, Anindita</creator><creator>Sengupta, Annesha</creator><creator>Elvitigala, Thanura</creator><creator>Pakrasi, Himadri B.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0008-7390-8921</orcidid><orcidid>https://orcid.org/0000-0001-8240-2123</orcidid><orcidid>https://orcid.org/0000-0002-9137-4379</orcidid><orcidid>https://orcid.org/0000-0002-5713-6019</orcidid></search><sort><creationdate>20240502</creationdate><title>Endogenous clock-mediated regulation of intracellular oxygen dynamics is essential for diazotrophic growth of unicellular cyanobacteria</title><author>Bandyopadhyay, Anindita ; Sengupta, Annesha ; Elvitigala, Thanura ; Pakrasi, Himadri B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-7b65df8b02d92da6b052fca744b9599e1025e4f484610b66a804ab628bc30ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>38/77</topic><topic>42/41</topic><topic>42/44</topic><topic>631/326/41</topic><topic>631/326/88</topic><topic>631/80/105</topic><topic>82/1</topic><topic>82/29</topic><topic>Atmospheric models</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biological clocks</topic><topic>Circadian Clocks - genetics</topic><topic>Circadian Clocks - physiology</topic><topic>Circadian rhythm</topic><topic>Circadian Rhythm Signaling Peptides and Proteins - genetics</topic><topic>Circadian Rhythm Signaling Peptides and Proteins - metabolism</topic><topic>Circadian rhythms</topic><topic>Cyanobacteria</topic><topic>Cyanobacteria - genetics</topic><topic>Cyanobacteria - metabolism</topic><topic>Cyanothece</topic><topic>Cyanothece - genetics</topic><topic>Cyanothece - metabolism</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Humanities and Social Sciences</topic><topic>Intracellular</topic><topic>multidisciplinary</topic><topic>Nitrogen</topic><topic>Nitrogen Fixation</topic><topic>Nitrogenase</topic><topic>Nitrogenase - genetics</topic><topic>Nitrogenase - metabolism</topic><topic>Nitrogenation</topic><topic>Oxygen</topic><topic>Oxygen - metabolism</topic><topic>Phenotypes</topic><topic>Prokaryotes</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bandyopadhyay, Anindita</creatorcontrib><creatorcontrib>Sengupta, Annesha</creatorcontrib><creatorcontrib>Elvitigala, Thanura</creatorcontrib><creatorcontrib>Pakrasi, Himadri B.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bandyopadhyay, Anindita</au><au>Sengupta, Annesha</au><au>Elvitigala, Thanura</au><au>Pakrasi, Himadri B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endogenous clock-mediated regulation of intracellular oxygen dynamics is essential for diazotrophic growth of unicellular cyanobacteria</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-05-02</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>3712</spage><epage>3712</epage><pages>3712-3712</pages><artnum>3712</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The discovery of nitrogen fixation in unicellular cyanobacteria provided the first clues for the existence of a circadian clock in prokaryotes. However, recalcitrance to genetic manipulation barred their use as model systems for deciphering the clock function. Here, we explore the circadian clock in the now genetically amenable Cyanothece 51142, a unicellular, nitrogen-fixing cyanobacterium. Unlike non-diazotrophic clock models, Cyanothece 51142 exhibits conspicuous self-sustained rhythms in various discernable phenotypes, offering a platform to directly study the effects of the clock on the physiology of an organism. Deletion of kaiA , an essential clock component in the cyanobacterial system, impacted the regulation of oxygen cycling and hindered nitrogenase activity. Our findings imply a role for the KaiA component of the clock in regulating the intracellular oxygen dynamics in unicellular diazotrophic cyanobacteria and suggest that its addition to the KaiBC clock was likely an adaptive strategy that ensured optimal nitrogen fixation as microbes evolved from an anaerobic to an aerobic atmosphere under nitrogen constraints. The authors investigate the circadian clock in a unicellular diazotrophic cyanobacterium. They demonstrate the role of the clock in regulating intracellular oxygen dynamics, a necessity to accommodate nitrogen fixation in an oxygen-producing cell.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38697963</pmid><doi>10.1038/s41467-024-48039-0</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0008-7390-8921</orcidid><orcidid>https://orcid.org/0000-0001-8240-2123</orcidid><orcidid>https://orcid.org/0000-0002-9137-4379</orcidid><orcidid>https://orcid.org/0000-0002-5713-6019</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2024-05, Vol.15 (1), p.3712-3712, Article 3712
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_28f776ae83374a11a1e22da3147d1281
source Publicly Available Content (ProQuest); Springer Nature - Connect here FIRST to enable access; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 38/77
42/41
42/44
631/326/41
631/326/88
631/80/105
82/1
82/29
Atmospheric models
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biological clocks
Circadian Clocks - genetics
Circadian Clocks - physiology
Circadian rhythm
Circadian Rhythm Signaling Peptides and Proteins - genetics
Circadian Rhythm Signaling Peptides and Proteins - metabolism
Circadian rhythms
Cyanobacteria
Cyanobacteria - genetics
Cyanobacteria - metabolism
Cyanothece
Cyanothece - genetics
Cyanothece - metabolism
Gene Expression Regulation, Bacterial
Humanities and Social Sciences
Intracellular
multidisciplinary
Nitrogen
Nitrogen Fixation
Nitrogenase
Nitrogenase - genetics
Nitrogenase - metabolism
Nitrogenation
Oxygen
Oxygen - metabolism
Phenotypes
Prokaryotes
Science
Science (multidisciplinary)
title Endogenous clock-mediated regulation of intracellular oxygen dynamics is essential for diazotrophic growth of unicellular cyanobacteria
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T18%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endogenous%20clock-mediated%20regulation%20of%20intracellular%20oxygen%20dynamics%20is%20essential%20for%20diazotrophic%20growth%20of%20unicellular%20cyanobacteria&rft.jtitle=Nature%20communications&rft.au=Bandyopadhyay,%20Anindita&rft.date=2024-05-02&rft.volume=15&rft.issue=1&rft.spage=3712&rft.epage=3712&rft.pages=3712-3712&rft.artnum=3712&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-48039-0&rft_dat=%3Cproquest_doaj_%3E3050934815%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-7b65df8b02d92da6b052fca744b9599e1025e4f484610b66a804ab628bc30ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3049932301&rft_id=info:pmid/38697963&rfr_iscdi=true