Loading…

Modification of nickel foam with nickel phosphate catalyst layer via anodizing for boosting the electrocatalytic urea oxidation and hydrogen evolution reactions

Urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) are the key processes for implementing urinated water electrolysis and hydrogen green production, respectively. This contribution investigates the modification of commercial nickel foam (NF) with a nickel phosphate (NiPO/NF) heteros...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Saudi Chemical Society 2024-09, Vol.28 (5), p.101913, Article 101913
Main Authors: Ghanem, Mohamed A., Al-Mayouf, Abdullah M., Abdulkader, Mohamed O., Alfudhayli, Khalaf A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c291t-2f2ec30f98b181c32cca629584d9a5468b6ab76963f31218785cc97a4f35cf793
container_end_page
container_issue 5
container_start_page 101913
container_title Journal of Saudi Chemical Society
container_volume 28
creator Ghanem, Mohamed A.
Al-Mayouf, Abdullah M.
Abdulkader, Mohamed O.
Alfudhayli, Khalaf A.
description Urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) are the key processes for implementing urinated water electrolysis and hydrogen green production, respectively. This contribution investigates the modification of commercial nickel foam (NF) with a nickel phosphate (NiPO/NF) heterostructure layer via anodizing in phosphate solution at various potentials (5, 10 and 15 V) as a simple and efficient route to boost the urea-assisted water electrolysis and hydrogen production in alkaline medium. The morphology and composition physicochemical characterisation of the phosphate layer exhibit aggregates of crystalline nanoparticles with interstitial mesoporous and macroporous networks with a mole composition ratio of 9.42: 1.0: 8.14 for Ni: P: O respectively. The electrochemical measurements revealed the NiPO/NF anodized at 10 V exhibits a superior electroactive surface area of 255 cm2, a substantially higher urea oxidation current compared to pristine NF, achieving 20 and 500 mA/cm2 at 1.35 and 1.6 V vs. RHE respectively and retained 100 % of activity during the urea electrolysis for more than 3 h. The electrochemical impedance analysis confirmed the alkaline urea oxidation reaction proceeded via indirect (EC) and direct mechanism and the CO2 intermediates adsorption–desorption became the predominant reaction at more positive potential. The NiPO/NF anode employed in an H-shape can deliver up to ±400 mA/cm2 for UOR/HER at a bias potential of 1.85 V and 8-fold (2.0 mmol/min) much higher hydrogen production rate compared to the pristine NF anode (0.25 mmol/min). Combining commercial nickel foam modification via anodizing and alkaline urea electrolysis at ambient conditions offers a unique and innovative solution for both large-scale hydrogen green production as well as remedy of the urinated wastewater for a more sustainable future.
doi_str_mv 10.1016/j.jscs.2024.101913
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2931a308805e453aae57f23f64c9e5dc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S131961032400108X</els_id><doaj_id>oai_doaj_org_article_2931a308805e453aae57f23f64c9e5dc</doaj_id><sourcerecordid>S131961032400108X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-2f2ec30f98b181c32cca629584d9a5468b6ab76963f31218785cc97a4f35cf793</originalsourceid><addsrcrecordid>eNp9kctuHCEQRXvhSLYc_4BX_MBMePQDpGwiKw9LjrKx16imupim3W5GgCeZfE0-NbQ78dJsgKu6pwpuVV0LvhVctB_G7ZgwbSWX9SIYoc6qC6GE2bSCq_PqKqWRL6vjkuuL6s_30HvnEbIPMwuOzR4faWIuwBP76fPwXzgMIR0GyMRKLUynlNkEJ4rs6IHBXCi__bwvvsh2IaS8XPJAjCbCHMNqyh7ZcyRg4Zfv15Yw92w49THsaWZ0DNPzi1yKcDmk99U7B1Oiq3_7ZfXw5fP9zbfN3Y-vtzef7jYojcgb6SSh4s7ondAClUSEVppG172Bpm71roVd15pWOSWk0J1uEE0HtVMNus6oy-p25fYBRnuI_gniyQbw9kUIcW8hlvknstIoAYprzRuqGwVATeekcm2NhpoeC0uuLIwhpUjulSe4XWKyo11isktMdo2pmD6uJiqvPHqKNqGnGan3sXxhGcO_Zf8L7G-heQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modification of nickel foam with nickel phosphate catalyst layer via anodizing for boosting the electrocatalytic urea oxidation and hydrogen evolution reactions</title><source>ScienceDirect</source><creator>Ghanem, Mohamed A. ; Al-Mayouf, Abdullah M. ; Abdulkader, Mohamed O. ; Alfudhayli, Khalaf A.</creator><creatorcontrib>Ghanem, Mohamed A. ; Al-Mayouf, Abdullah M. ; Abdulkader, Mohamed O. ; Alfudhayli, Khalaf A.</creatorcontrib><description>Urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) are the key processes for implementing urinated water electrolysis and hydrogen green production, respectively. This contribution investigates the modification of commercial nickel foam (NF) with a nickel phosphate (NiPO/NF) heterostructure layer via anodizing in phosphate solution at various potentials (5, 10 and 15 V) as a simple and efficient route to boost the urea-assisted water electrolysis and hydrogen production in alkaline medium. The morphology and composition physicochemical characterisation of the phosphate layer exhibit aggregates of crystalline nanoparticles with interstitial mesoporous and macroporous networks with a mole composition ratio of 9.42: 1.0: 8.14 for Ni: P: O respectively. The electrochemical measurements revealed the NiPO/NF anodized at 10 V exhibits a superior electroactive surface area of 255 cm2, a substantially higher urea oxidation current compared to pristine NF, achieving 20 and 500 mA/cm2 at 1.35 and 1.6 V vs. RHE respectively and retained 100 % of activity during the urea electrolysis for more than 3 h. The electrochemical impedance analysis confirmed the alkaline urea oxidation reaction proceeded via indirect (EC) and direct mechanism and the CO2 intermediates adsorption–desorption became the predominant reaction at more positive potential. The NiPO/NF anode employed in an H-shape can deliver up to ±400 mA/cm2 for UOR/HER at a bias potential of 1.85 V and 8-fold (2.0 mmol/min) much higher hydrogen production rate compared to the pristine NF anode (0.25 mmol/min). Combining commercial nickel foam modification via anodizing and alkaline urea electrolysis at ambient conditions offers a unique and innovative solution for both large-scale hydrogen green production as well as remedy of the urinated wastewater for a more sustainable future.</description><identifier>ISSN: 1319-6103</identifier><identifier>DOI: 10.1016/j.jscs.2024.101913</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Anodizing ; Hydrogen production ; Nickel foam ; Phosphate catalyst ; Urea oxidation</subject><ispartof>Journal of Saudi Chemical Society, 2024-09, Vol.28 (5), p.101913, Article 101913</ispartof><rights>2024 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c291t-2f2ec30f98b181c32cca629584d9a5468b6ab76963f31218785cc97a4f35cf793</cites><orcidid>0000-0001-9246-7684 ; 0000-0003-2866-9016 ; 0009-0009-7492-2327 ; 0000-0002-9595-5357</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S131961032400108X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45759</link.rule.ids></links><search><creatorcontrib>Ghanem, Mohamed A.</creatorcontrib><creatorcontrib>Al-Mayouf, Abdullah M.</creatorcontrib><creatorcontrib>Abdulkader, Mohamed O.</creatorcontrib><creatorcontrib>Alfudhayli, Khalaf A.</creatorcontrib><title>Modification of nickel foam with nickel phosphate catalyst layer via anodizing for boosting the electrocatalytic urea oxidation and hydrogen evolution reactions</title><title>Journal of Saudi Chemical Society</title><description>Urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) are the key processes for implementing urinated water electrolysis and hydrogen green production, respectively. This contribution investigates the modification of commercial nickel foam (NF) with a nickel phosphate (NiPO/NF) heterostructure layer via anodizing in phosphate solution at various potentials (5, 10 and 15 V) as a simple and efficient route to boost the urea-assisted water electrolysis and hydrogen production in alkaline medium. The morphology and composition physicochemical characterisation of the phosphate layer exhibit aggregates of crystalline nanoparticles with interstitial mesoporous and macroporous networks with a mole composition ratio of 9.42: 1.0: 8.14 for Ni: P: O respectively. The electrochemical measurements revealed the NiPO/NF anodized at 10 V exhibits a superior electroactive surface area of 255 cm2, a substantially higher urea oxidation current compared to pristine NF, achieving 20 and 500 mA/cm2 at 1.35 and 1.6 V vs. RHE respectively and retained 100 % of activity during the urea electrolysis for more than 3 h. The electrochemical impedance analysis confirmed the alkaline urea oxidation reaction proceeded via indirect (EC) and direct mechanism and the CO2 intermediates adsorption–desorption became the predominant reaction at more positive potential. The NiPO/NF anode employed in an H-shape can deliver up to ±400 mA/cm2 for UOR/HER at a bias potential of 1.85 V and 8-fold (2.0 mmol/min) much higher hydrogen production rate compared to the pristine NF anode (0.25 mmol/min). Combining commercial nickel foam modification via anodizing and alkaline urea electrolysis at ambient conditions offers a unique and innovative solution for both large-scale hydrogen green production as well as remedy of the urinated wastewater for a more sustainable future.</description><subject>Anodizing</subject><subject>Hydrogen production</subject><subject>Nickel foam</subject><subject>Phosphate catalyst</subject><subject>Urea oxidation</subject><issn>1319-6103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kctuHCEQRXvhSLYc_4BX_MBMePQDpGwiKw9LjrKx16imupim3W5GgCeZfE0-NbQ78dJsgKu6pwpuVV0LvhVctB_G7ZgwbSWX9SIYoc6qC6GE2bSCq_PqKqWRL6vjkuuL6s_30HvnEbIPMwuOzR4faWIuwBP76fPwXzgMIR0GyMRKLUynlNkEJ4rs6IHBXCi__bwvvsh2IaS8XPJAjCbCHMNqyh7ZcyRg4Zfv15Yw92w49THsaWZ0DNPzi1yKcDmk99U7B1Oiq3_7ZfXw5fP9zbfN3Y-vtzef7jYojcgb6SSh4s7ondAClUSEVppG172Bpm71roVd15pWOSWk0J1uEE0HtVMNus6oy-p25fYBRnuI_gniyQbw9kUIcW8hlvknstIoAYprzRuqGwVATeekcm2NhpoeC0uuLIwhpUjulSe4XWKyo11isktMdo2pmD6uJiqvPHqKNqGnGan3sXxhGcO_Zf8L7G-heQ</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Ghanem, Mohamed A.</creator><creator>Al-Mayouf, Abdullah M.</creator><creator>Abdulkader, Mohamed O.</creator><creator>Alfudhayli, Khalaf A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9246-7684</orcidid><orcidid>https://orcid.org/0000-0003-2866-9016</orcidid><orcidid>https://orcid.org/0009-0009-7492-2327</orcidid><orcidid>https://orcid.org/0000-0002-9595-5357</orcidid></search><sort><creationdate>202409</creationdate><title>Modification of nickel foam with nickel phosphate catalyst layer via anodizing for boosting the electrocatalytic urea oxidation and hydrogen evolution reactions</title><author>Ghanem, Mohamed A. ; Al-Mayouf, Abdullah M. ; Abdulkader, Mohamed O. ; Alfudhayli, Khalaf A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-2f2ec30f98b181c32cca629584d9a5468b6ab76963f31218785cc97a4f35cf793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anodizing</topic><topic>Hydrogen production</topic><topic>Nickel foam</topic><topic>Phosphate catalyst</topic><topic>Urea oxidation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghanem, Mohamed A.</creatorcontrib><creatorcontrib>Al-Mayouf, Abdullah M.</creatorcontrib><creatorcontrib>Abdulkader, Mohamed O.</creatorcontrib><creatorcontrib>Alfudhayli, Khalaf A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Saudi Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghanem, Mohamed A.</au><au>Al-Mayouf, Abdullah M.</au><au>Abdulkader, Mohamed O.</au><au>Alfudhayli, Khalaf A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modification of nickel foam with nickel phosphate catalyst layer via anodizing for boosting the electrocatalytic urea oxidation and hydrogen evolution reactions</atitle><jtitle>Journal of Saudi Chemical Society</jtitle><date>2024-09</date><risdate>2024</risdate><volume>28</volume><issue>5</issue><spage>101913</spage><pages>101913-</pages><artnum>101913</artnum><issn>1319-6103</issn><abstract>Urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) are the key processes for implementing urinated water electrolysis and hydrogen green production, respectively. This contribution investigates the modification of commercial nickel foam (NF) with a nickel phosphate (NiPO/NF) heterostructure layer via anodizing in phosphate solution at various potentials (5, 10 and 15 V) as a simple and efficient route to boost the urea-assisted water electrolysis and hydrogen production in alkaline medium. The morphology and composition physicochemical characterisation of the phosphate layer exhibit aggregates of crystalline nanoparticles with interstitial mesoporous and macroporous networks with a mole composition ratio of 9.42: 1.0: 8.14 for Ni: P: O respectively. The electrochemical measurements revealed the NiPO/NF anodized at 10 V exhibits a superior electroactive surface area of 255 cm2, a substantially higher urea oxidation current compared to pristine NF, achieving 20 and 500 mA/cm2 at 1.35 and 1.6 V vs. RHE respectively and retained 100 % of activity during the urea electrolysis for more than 3 h. The electrochemical impedance analysis confirmed the alkaline urea oxidation reaction proceeded via indirect (EC) and direct mechanism and the CO2 intermediates adsorption–desorption became the predominant reaction at more positive potential. The NiPO/NF anode employed in an H-shape can deliver up to ±400 mA/cm2 for UOR/HER at a bias potential of 1.85 V and 8-fold (2.0 mmol/min) much higher hydrogen production rate compared to the pristine NF anode (0.25 mmol/min). Combining commercial nickel foam modification via anodizing and alkaline urea electrolysis at ambient conditions offers a unique and innovative solution for both large-scale hydrogen green production as well as remedy of the urinated wastewater for a more sustainable future.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jscs.2024.101913</doi><orcidid>https://orcid.org/0000-0001-9246-7684</orcidid><orcidid>https://orcid.org/0000-0003-2866-9016</orcidid><orcidid>https://orcid.org/0009-0009-7492-2327</orcidid><orcidid>https://orcid.org/0000-0002-9595-5357</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1319-6103
ispartof Journal of Saudi Chemical Society, 2024-09, Vol.28 (5), p.101913, Article 101913
issn 1319-6103
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2931a308805e453aae57f23f64c9e5dc
source ScienceDirect
subjects Anodizing
Hydrogen production
Nickel foam
Phosphate catalyst
Urea oxidation
title Modification of nickel foam with nickel phosphate catalyst layer via anodizing for boosting the electrocatalytic urea oxidation and hydrogen evolution reactions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A01%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modification%20of%20nickel%20foam%20with%20nickel%20phosphate%20catalyst%20layer%20via%20anodizing%20for%20boosting%20the%20electrocatalytic%20urea%20oxidation%20and%20hydrogen%20evolution%20reactions&rft.jtitle=Journal%20of%20Saudi%20Chemical%20Society&rft.au=Ghanem,%20Mohamed%20A.&rft.date=2024-09&rft.volume=28&rft.issue=5&rft.spage=101913&rft.pages=101913-&rft.artnum=101913&rft.issn=1319-6103&rft_id=info:doi/10.1016/j.jscs.2024.101913&rft_dat=%3Celsevier_doaj_%3ES131961032400108X%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-2f2ec30f98b181c32cca629584d9a5468b6ab76963f31218785cc97a4f35cf793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true