Loading…

Prediction of the interaction between Calloselasma rhodostoma venom-derived peptides and cancer-associated hub proteins: A computational study

The use of peptide drugs to treat cancer is gaining popularity because of their efficacy, fewer side effects, and several advantages over other properties. Identifying the peptides that interact with cancer proteins is crucial in drug discovery. Several approaches related to predicting peptide-prote...

Full description

Saved in:
Bibliographic Details
Published in:Heliyon 2023-11, Vol.9 (11), p.e21149-e21149, Article e21149
Main Authors: Kusuma, Wisnu Ananta, Fadli, Aulia, Fatriani, Rizka, Sofyantoro, Fajar, Yudha, Donan Satria, Lischer, Kenny, Nuringtyas, Tri Rini, Putri, Wahyu Aristyaning, Purwestri, Yekti Asih, Swasono, Respati Tri
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c459t-f5088d734b3c232495092f5219986513d9120ee9a89c8aea7e0623af7fb11c673
container_end_page e21149
container_issue 11
container_start_page e21149
container_title Heliyon
container_volume 9
creator Kusuma, Wisnu Ananta
Fadli, Aulia
Fatriani, Rizka
Sofyantoro, Fajar
Yudha, Donan Satria
Lischer, Kenny
Nuringtyas, Tri Rini
Putri, Wahyu Aristyaning
Purwestri, Yekti Asih
Swasono, Respati Tri
description The use of peptide drugs to treat cancer is gaining popularity because of their efficacy, fewer side effects, and several advantages over other properties. Identifying the peptides that interact with cancer proteins is crucial in drug discovery. Several approaches related to predicting peptide-protein interactions have been conducted. However, problems arise due to the high costs of resources and time and the smaller number of studies. This study predicts peptide-protein interactions using Random Forest, XGBoost, and SAE-DNN. Feature extraction is also performed on proteins and peptides using intrinsic disorder, amino acid sequences, physicochemical properties, position-specific assessment matrices, amino acid composition, and dipeptide composition. Results show that all algorithms perform equally well in predicting interactions between peptides derived from venoms and target proteins associated with cancer. However, XGBoost produces the best results with accuracy, precision, and area under the receiver operating characteristic curve of 0.859, 0.663, and 0.697, respectively. The enrichment analysis revealed that peptides from the Calloselasma rhodostoma venom targeted several proteins (ESR1, GOPC, and BRD4) related to cancer.
doi_str_mv 10.1016/j.heliyon.2023.e21149
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_293db5b52b0e4b7d8b77d2fa327b3671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2405844023083573</els_id><doaj_id>oai_doaj_org_article_293db5b52b0e4b7d8b77d2fa327b3671</doaj_id><sourcerecordid>2889589011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-f5088d734b3c232495092f5219986513d9120ee9a89c8aea7e0623af7fb11c673</originalsourceid><addsrcrecordid>eNqFksuKFDEUhgtRcBjnEYQs3VSbS6WSuJGh8TIwoAtdh1xOTaepSsok1dIvMc9std2os3KVw_nD95-T_E3zmuANwaR_u9_sYAzHFDcUU7YBSkinnjVXtMO8lV2Hn_9Tv2xuStljjAmXvRLsqnn8msEHV0OKKA2o7gCFWCGbc8tC_QkQ0daMYyowmjIZlHfJp1LTWh4gpqn1kMMBPJphrsFDQSZ65Ex0kFtTSnLB1FXeLRbNOVUIsbxDt8ilaV6qORmZEZW6-OOr5sVgxgI3l_O6-f7xw7ft5_b-y6e77e196zquajtwLKUXrLPMUUY7xbGiA6dEKdlzwrwiFAMoI5WTBowA3FNmBjFYQlwv2HVzd-b6ZPZ6zmEy-aiTCfp3I-UHbXINbgRNFfOWW04ths4KL60Qng6GUWFZL8jKen9mzYudwDuINZvxCfSpEsNOP6SDJrhnQlG-Et5cCDn9WKBUPYXiYBxNhLQUTaVUXCpMTmb8fNXlVEqG4Y8PwfoUCL3Xl0DoUyD0ORB_h4T1VQ8Bsi4uwPpDPmRwdV07_IfwC8PCxcQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889589011</pqid></control><display><type>article</type><title>Prediction of the interaction between Calloselasma rhodostoma venom-derived peptides and cancer-associated hub proteins: A computational study</title><source>Elsevier ScienceDirect Journals</source><source>PubMed Central</source><creator>Kusuma, Wisnu Ananta ; Fadli, Aulia ; Fatriani, Rizka ; Sofyantoro, Fajar ; Yudha, Donan Satria ; Lischer, Kenny ; Nuringtyas, Tri Rini ; Putri, Wahyu Aristyaning ; Purwestri, Yekti Asih ; Swasono, Respati Tri</creator><creatorcontrib>Kusuma, Wisnu Ananta ; Fadli, Aulia ; Fatriani, Rizka ; Sofyantoro, Fajar ; Yudha, Donan Satria ; Lischer, Kenny ; Nuringtyas, Tri Rini ; Putri, Wahyu Aristyaning ; Purwestri, Yekti Asih ; Swasono, Respati Tri</creatorcontrib><description>The use of peptide drugs to treat cancer is gaining popularity because of their efficacy, fewer side effects, and several advantages over other properties. Identifying the peptides that interact with cancer proteins is crucial in drug discovery. Several approaches related to predicting peptide-protein interactions have been conducted. However, problems arise due to the high costs of resources and time and the smaller number of studies. This study predicts peptide-protein interactions using Random Forest, XGBoost, and SAE-DNN. Feature extraction is also performed on proteins and peptides using intrinsic disorder, amino acid sequences, physicochemical properties, position-specific assessment matrices, amino acid composition, and dipeptide composition. Results show that all algorithms perform equally well in predicting interactions between peptides derived from venoms and target proteins associated with cancer. However, XGBoost produces the best results with accuracy, precision, and area under the receiver operating characteristic curve of 0.859, 0.663, and 0.697, respectively. The enrichment analysis revealed that peptides from the Calloselasma rhodostoma venom targeted several proteins (ESR1, GOPC, and BRD4) related to cancer.</description><identifier>ISSN: 2405-8440</identifier><identifier>EISSN: 2405-8440</identifier><identifier>DOI: 10.1016/j.heliyon.2023.e21149</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bioinformatics ; Biomedical ; Cancer ; Deep learning ; Peptide ; Venom</subject><ispartof>Heliyon, 2023-11, Vol.9 (11), p.e21149-e21149, Article e21149</ispartof><rights>2023 The Authors</rights><rights>2023 The Authors 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c459t-f5088d734b3c232495092f5219986513d9120ee9a89c8aea7e0623af7fb11c673</cites><orcidid>0000-0003-1424-1609 ; 0000-0002-8011-8396 ; 0000-0002-7032-9253 ; 0000-0003-0952-1956 ; 0000-0002-0007-3301 ; 0000-0002-3682-244X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10637925/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2405844023083573$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids></links><search><creatorcontrib>Kusuma, Wisnu Ananta</creatorcontrib><creatorcontrib>Fadli, Aulia</creatorcontrib><creatorcontrib>Fatriani, Rizka</creatorcontrib><creatorcontrib>Sofyantoro, Fajar</creatorcontrib><creatorcontrib>Yudha, Donan Satria</creatorcontrib><creatorcontrib>Lischer, Kenny</creatorcontrib><creatorcontrib>Nuringtyas, Tri Rini</creatorcontrib><creatorcontrib>Putri, Wahyu Aristyaning</creatorcontrib><creatorcontrib>Purwestri, Yekti Asih</creatorcontrib><creatorcontrib>Swasono, Respati Tri</creatorcontrib><title>Prediction of the interaction between Calloselasma rhodostoma venom-derived peptides and cancer-associated hub proteins: A computational study</title><title>Heliyon</title><description>The use of peptide drugs to treat cancer is gaining popularity because of their efficacy, fewer side effects, and several advantages over other properties. Identifying the peptides that interact with cancer proteins is crucial in drug discovery. Several approaches related to predicting peptide-protein interactions have been conducted. However, problems arise due to the high costs of resources and time and the smaller number of studies. This study predicts peptide-protein interactions using Random Forest, XGBoost, and SAE-DNN. Feature extraction is also performed on proteins and peptides using intrinsic disorder, amino acid sequences, physicochemical properties, position-specific assessment matrices, amino acid composition, and dipeptide composition. Results show that all algorithms perform equally well in predicting interactions between peptides derived from venoms and target proteins associated with cancer. However, XGBoost produces the best results with accuracy, precision, and area under the receiver operating characteristic curve of 0.859, 0.663, and 0.697, respectively. The enrichment analysis revealed that peptides from the Calloselasma rhodostoma venom targeted several proteins (ESR1, GOPC, and BRD4) related to cancer.</description><subject>Bioinformatics</subject><subject>Biomedical</subject><subject>Cancer</subject><subject>Deep learning</subject><subject>Peptide</subject><subject>Venom</subject><issn>2405-8440</issn><issn>2405-8440</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFksuKFDEUhgtRcBjnEYQs3VSbS6WSuJGh8TIwoAtdh1xOTaepSsok1dIvMc9std2os3KVw_nD95-T_E3zmuANwaR_u9_sYAzHFDcUU7YBSkinnjVXtMO8lV2Hn_9Tv2xuStljjAmXvRLsqnn8msEHV0OKKA2o7gCFWCGbc8tC_QkQ0daMYyowmjIZlHfJp1LTWh4gpqn1kMMBPJphrsFDQSZ65Ex0kFtTSnLB1FXeLRbNOVUIsbxDt8ilaV6qORmZEZW6-OOr5sVgxgI3l_O6-f7xw7ft5_b-y6e77e196zquajtwLKUXrLPMUUY7xbGiA6dEKdlzwrwiFAMoI5WTBowA3FNmBjFYQlwv2HVzd-b6ZPZ6zmEy-aiTCfp3I-UHbXINbgRNFfOWW04ths4KL60Qng6GUWFZL8jKen9mzYudwDuINZvxCfSpEsNOP6SDJrhnQlG-Et5cCDn9WKBUPYXiYBxNhLQUTaVUXCpMTmb8fNXlVEqG4Y8PwfoUCL3Xl0DoUyD0ORB_h4T1VQ8Bsi4uwPpDPmRwdV07_IfwC8PCxcQ</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Kusuma, Wisnu Ananta</creator><creator>Fadli, Aulia</creator><creator>Fatriani, Rizka</creator><creator>Sofyantoro, Fajar</creator><creator>Yudha, Donan Satria</creator><creator>Lischer, Kenny</creator><creator>Nuringtyas, Tri Rini</creator><creator>Putri, Wahyu Aristyaning</creator><creator>Purwestri, Yekti Asih</creator><creator>Swasono, Respati Tri</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1424-1609</orcidid><orcidid>https://orcid.org/0000-0002-8011-8396</orcidid><orcidid>https://orcid.org/0000-0002-7032-9253</orcidid><orcidid>https://orcid.org/0000-0003-0952-1956</orcidid><orcidid>https://orcid.org/0000-0002-0007-3301</orcidid><orcidid>https://orcid.org/0000-0002-3682-244X</orcidid></search><sort><creationdate>20231101</creationdate><title>Prediction of the interaction between Calloselasma rhodostoma venom-derived peptides and cancer-associated hub proteins: A computational study</title><author>Kusuma, Wisnu Ananta ; Fadli, Aulia ; Fatriani, Rizka ; Sofyantoro, Fajar ; Yudha, Donan Satria ; Lischer, Kenny ; Nuringtyas, Tri Rini ; Putri, Wahyu Aristyaning ; Purwestri, Yekti Asih ; Swasono, Respati Tri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-f5088d734b3c232495092f5219986513d9120ee9a89c8aea7e0623af7fb11c673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bioinformatics</topic><topic>Biomedical</topic><topic>Cancer</topic><topic>Deep learning</topic><topic>Peptide</topic><topic>Venom</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kusuma, Wisnu Ananta</creatorcontrib><creatorcontrib>Fadli, Aulia</creatorcontrib><creatorcontrib>Fatriani, Rizka</creatorcontrib><creatorcontrib>Sofyantoro, Fajar</creatorcontrib><creatorcontrib>Yudha, Donan Satria</creatorcontrib><creatorcontrib>Lischer, Kenny</creatorcontrib><creatorcontrib>Nuringtyas, Tri Rini</creatorcontrib><creatorcontrib>Putri, Wahyu Aristyaning</creatorcontrib><creatorcontrib>Purwestri, Yekti Asih</creatorcontrib><creatorcontrib>Swasono, Respati Tri</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Heliyon</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kusuma, Wisnu Ananta</au><au>Fadli, Aulia</au><au>Fatriani, Rizka</au><au>Sofyantoro, Fajar</au><au>Yudha, Donan Satria</au><au>Lischer, Kenny</au><au>Nuringtyas, Tri Rini</au><au>Putri, Wahyu Aristyaning</au><au>Purwestri, Yekti Asih</au><au>Swasono, Respati Tri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of the interaction between Calloselasma rhodostoma venom-derived peptides and cancer-associated hub proteins: A computational study</atitle><jtitle>Heliyon</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>9</volume><issue>11</issue><spage>e21149</spage><epage>e21149</epage><pages>e21149-e21149</pages><artnum>e21149</artnum><issn>2405-8440</issn><eissn>2405-8440</eissn><abstract>The use of peptide drugs to treat cancer is gaining popularity because of their efficacy, fewer side effects, and several advantages over other properties. Identifying the peptides that interact with cancer proteins is crucial in drug discovery. Several approaches related to predicting peptide-protein interactions have been conducted. However, problems arise due to the high costs of resources and time and the smaller number of studies. This study predicts peptide-protein interactions using Random Forest, XGBoost, and SAE-DNN. Feature extraction is also performed on proteins and peptides using intrinsic disorder, amino acid sequences, physicochemical properties, position-specific assessment matrices, amino acid composition, and dipeptide composition. Results show that all algorithms perform equally well in predicting interactions between peptides derived from venoms and target proteins associated with cancer. However, XGBoost produces the best results with accuracy, precision, and area under the receiver operating characteristic curve of 0.859, 0.663, and 0.697, respectively. The enrichment analysis revealed that peptides from the Calloselasma rhodostoma venom targeted several proteins (ESR1, GOPC, and BRD4) related to cancer.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.heliyon.2023.e21149</doi><orcidid>https://orcid.org/0000-0003-1424-1609</orcidid><orcidid>https://orcid.org/0000-0002-8011-8396</orcidid><orcidid>https://orcid.org/0000-0002-7032-9253</orcidid><orcidid>https://orcid.org/0000-0003-0952-1956</orcidid><orcidid>https://orcid.org/0000-0002-0007-3301</orcidid><orcidid>https://orcid.org/0000-0002-3682-244X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2405-8440
ispartof Heliyon, 2023-11, Vol.9 (11), p.e21149-e21149, Article e21149
issn 2405-8440
2405-8440
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_293db5b52b0e4b7d8b77d2fa327b3671
source Elsevier ScienceDirect Journals; PubMed Central
subjects Bioinformatics
Biomedical
Cancer
Deep learning
Peptide
Venom
title Prediction of the interaction between Calloselasma rhodostoma venom-derived peptides and cancer-associated hub proteins: A computational study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A17%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20the%20interaction%20between%20Calloselasma%20rhodostoma%20venom-derived%20peptides%20and%20cancer-associated%20hub%20proteins:%20A%20computational%20study&rft.jtitle=Heliyon&rft.au=Kusuma,%20Wisnu%20Ananta&rft.date=2023-11-01&rft.volume=9&rft.issue=11&rft.spage=e21149&rft.epage=e21149&rft.pages=e21149-e21149&rft.artnum=e21149&rft.issn=2405-8440&rft.eissn=2405-8440&rft_id=info:doi/10.1016/j.heliyon.2023.e21149&rft_dat=%3Cproquest_doaj_%3E2889589011%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c459t-f5088d734b3c232495092f5219986513d9120ee9a89c8aea7e0623af7fb11c673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2889589011&rft_id=info:pmid/&rfr_iscdi=true