Loading…
Prediction of the interaction between Calloselasma rhodostoma venom-derived peptides and cancer-associated hub proteins: A computational study
The use of peptide drugs to treat cancer is gaining popularity because of their efficacy, fewer side effects, and several advantages over other properties. Identifying the peptides that interact with cancer proteins is crucial in drug discovery. Several approaches related to predicting peptide-prote...
Saved in:
Published in: | Heliyon 2023-11, Vol.9 (11), p.e21149-e21149, Article e21149 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c459t-f5088d734b3c232495092f5219986513d9120ee9a89c8aea7e0623af7fb11c673 |
container_end_page | e21149 |
container_issue | 11 |
container_start_page | e21149 |
container_title | Heliyon |
container_volume | 9 |
creator | Kusuma, Wisnu Ananta Fadli, Aulia Fatriani, Rizka Sofyantoro, Fajar Yudha, Donan Satria Lischer, Kenny Nuringtyas, Tri Rini Putri, Wahyu Aristyaning Purwestri, Yekti Asih Swasono, Respati Tri |
description | The use of peptide drugs to treat cancer is gaining popularity because of their efficacy, fewer side effects, and several advantages over other properties. Identifying the peptides that interact with cancer proteins is crucial in drug discovery. Several approaches related to predicting peptide-protein interactions have been conducted. However, problems arise due to the high costs of resources and time and the smaller number of studies. This study predicts peptide-protein interactions using Random Forest, XGBoost, and SAE-DNN. Feature extraction is also performed on proteins and peptides using intrinsic disorder, amino acid sequences, physicochemical properties, position-specific assessment matrices, amino acid composition, and dipeptide composition. Results show that all algorithms perform equally well in predicting interactions between peptides derived from venoms and target proteins associated with cancer. However, XGBoost produces the best results with accuracy, precision, and area under the receiver operating characteristic curve of 0.859, 0.663, and 0.697, respectively. The enrichment analysis revealed that peptides from the Calloselasma rhodostoma venom targeted several proteins (ESR1, GOPC, and BRD4) related to cancer. |
doi_str_mv | 10.1016/j.heliyon.2023.e21149 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_293db5b52b0e4b7d8b77d2fa327b3671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2405844023083573</els_id><doaj_id>oai_doaj_org_article_293db5b52b0e4b7d8b77d2fa327b3671</doaj_id><sourcerecordid>2889589011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-f5088d734b3c232495092f5219986513d9120ee9a89c8aea7e0623af7fb11c673</originalsourceid><addsrcrecordid>eNqFksuKFDEUhgtRcBjnEYQs3VSbS6WSuJGh8TIwoAtdh1xOTaepSsok1dIvMc9std2os3KVw_nD95-T_E3zmuANwaR_u9_sYAzHFDcUU7YBSkinnjVXtMO8lV2Hn_9Tv2xuStljjAmXvRLsqnn8msEHV0OKKA2o7gCFWCGbc8tC_QkQ0daMYyowmjIZlHfJp1LTWh4gpqn1kMMBPJphrsFDQSZ65Ex0kFtTSnLB1FXeLRbNOVUIsbxDt8ilaV6qORmZEZW6-OOr5sVgxgI3l_O6-f7xw7ft5_b-y6e77e196zquajtwLKUXrLPMUUY7xbGiA6dEKdlzwrwiFAMoI5WTBowA3FNmBjFYQlwv2HVzd-b6ZPZ6zmEy-aiTCfp3I-UHbXINbgRNFfOWW04ths4KL60Qng6GUWFZL8jKen9mzYudwDuINZvxCfSpEsNOP6SDJrhnQlG-Et5cCDn9WKBUPYXiYBxNhLQUTaVUXCpMTmb8fNXlVEqG4Y8PwfoUCL3Xl0DoUyD0ORB_h4T1VQ8Bsi4uwPpDPmRwdV07_IfwC8PCxcQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889589011</pqid></control><display><type>article</type><title>Prediction of the interaction between Calloselasma rhodostoma venom-derived peptides and cancer-associated hub proteins: A computational study</title><source>Elsevier ScienceDirect Journals</source><source>PubMed Central</source><creator>Kusuma, Wisnu Ananta ; Fadli, Aulia ; Fatriani, Rizka ; Sofyantoro, Fajar ; Yudha, Donan Satria ; Lischer, Kenny ; Nuringtyas, Tri Rini ; Putri, Wahyu Aristyaning ; Purwestri, Yekti Asih ; Swasono, Respati Tri</creator><creatorcontrib>Kusuma, Wisnu Ananta ; Fadli, Aulia ; Fatriani, Rizka ; Sofyantoro, Fajar ; Yudha, Donan Satria ; Lischer, Kenny ; Nuringtyas, Tri Rini ; Putri, Wahyu Aristyaning ; Purwestri, Yekti Asih ; Swasono, Respati Tri</creatorcontrib><description>The use of peptide drugs to treat cancer is gaining popularity because of their efficacy, fewer side effects, and several advantages over other properties. Identifying the peptides that interact with cancer proteins is crucial in drug discovery. Several approaches related to predicting peptide-protein interactions have been conducted. However, problems arise due to the high costs of resources and time and the smaller number of studies. This study predicts peptide-protein interactions using Random Forest, XGBoost, and SAE-DNN. Feature extraction is also performed on proteins and peptides using intrinsic disorder, amino acid sequences, physicochemical properties, position-specific assessment matrices, amino acid composition, and dipeptide composition. Results show that all algorithms perform equally well in predicting interactions between peptides derived from venoms and target proteins associated with cancer. However, XGBoost produces the best results with accuracy, precision, and area under the receiver operating characteristic curve of 0.859, 0.663, and 0.697, respectively. The enrichment analysis revealed that peptides from the Calloselasma rhodostoma venom targeted several proteins (ESR1, GOPC, and BRD4) related to cancer.</description><identifier>ISSN: 2405-8440</identifier><identifier>EISSN: 2405-8440</identifier><identifier>DOI: 10.1016/j.heliyon.2023.e21149</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bioinformatics ; Biomedical ; Cancer ; Deep learning ; Peptide ; Venom</subject><ispartof>Heliyon, 2023-11, Vol.9 (11), p.e21149-e21149, Article e21149</ispartof><rights>2023 The Authors</rights><rights>2023 The Authors 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c459t-f5088d734b3c232495092f5219986513d9120ee9a89c8aea7e0623af7fb11c673</cites><orcidid>0000-0003-1424-1609 ; 0000-0002-8011-8396 ; 0000-0002-7032-9253 ; 0000-0003-0952-1956 ; 0000-0002-0007-3301 ; 0000-0002-3682-244X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10637925/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2405844023083573$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids></links><search><creatorcontrib>Kusuma, Wisnu Ananta</creatorcontrib><creatorcontrib>Fadli, Aulia</creatorcontrib><creatorcontrib>Fatriani, Rizka</creatorcontrib><creatorcontrib>Sofyantoro, Fajar</creatorcontrib><creatorcontrib>Yudha, Donan Satria</creatorcontrib><creatorcontrib>Lischer, Kenny</creatorcontrib><creatorcontrib>Nuringtyas, Tri Rini</creatorcontrib><creatorcontrib>Putri, Wahyu Aristyaning</creatorcontrib><creatorcontrib>Purwestri, Yekti Asih</creatorcontrib><creatorcontrib>Swasono, Respati Tri</creatorcontrib><title>Prediction of the interaction between Calloselasma rhodostoma venom-derived peptides and cancer-associated hub proteins: A computational study</title><title>Heliyon</title><description>The use of peptide drugs to treat cancer is gaining popularity because of their efficacy, fewer side effects, and several advantages over other properties. Identifying the peptides that interact with cancer proteins is crucial in drug discovery. Several approaches related to predicting peptide-protein interactions have been conducted. However, problems arise due to the high costs of resources and time and the smaller number of studies. This study predicts peptide-protein interactions using Random Forest, XGBoost, and SAE-DNN. Feature extraction is also performed on proteins and peptides using intrinsic disorder, amino acid sequences, physicochemical properties, position-specific assessment matrices, amino acid composition, and dipeptide composition. Results show that all algorithms perform equally well in predicting interactions between peptides derived from venoms and target proteins associated with cancer. However, XGBoost produces the best results with accuracy, precision, and area under the receiver operating characteristic curve of 0.859, 0.663, and 0.697, respectively. The enrichment analysis revealed that peptides from the Calloselasma rhodostoma venom targeted several proteins (ESR1, GOPC, and BRD4) related to cancer.</description><subject>Bioinformatics</subject><subject>Biomedical</subject><subject>Cancer</subject><subject>Deep learning</subject><subject>Peptide</subject><subject>Venom</subject><issn>2405-8440</issn><issn>2405-8440</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFksuKFDEUhgtRcBjnEYQs3VSbS6WSuJGh8TIwoAtdh1xOTaepSsok1dIvMc9std2os3KVw_nD95-T_E3zmuANwaR_u9_sYAzHFDcUU7YBSkinnjVXtMO8lV2Hn_9Tv2xuStljjAmXvRLsqnn8msEHV0OKKA2o7gCFWCGbc8tC_QkQ0daMYyowmjIZlHfJp1LTWh4gpqn1kMMBPJphrsFDQSZ65Ex0kFtTSnLB1FXeLRbNOVUIsbxDt8ilaV6qORmZEZW6-OOr5sVgxgI3l_O6-f7xw7ft5_b-y6e77e196zquajtwLKUXrLPMUUY7xbGiA6dEKdlzwrwiFAMoI5WTBowA3FNmBjFYQlwv2HVzd-b6ZPZ6zmEy-aiTCfp3I-UHbXINbgRNFfOWW04ths4KL60Qng6GUWFZL8jKen9mzYudwDuINZvxCfSpEsNOP6SDJrhnQlG-Et5cCDn9WKBUPYXiYBxNhLQUTaVUXCpMTmb8fNXlVEqG4Y8PwfoUCL3Xl0DoUyD0ORB_h4T1VQ8Bsi4uwPpDPmRwdV07_IfwC8PCxcQ</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Kusuma, Wisnu Ananta</creator><creator>Fadli, Aulia</creator><creator>Fatriani, Rizka</creator><creator>Sofyantoro, Fajar</creator><creator>Yudha, Donan Satria</creator><creator>Lischer, Kenny</creator><creator>Nuringtyas, Tri Rini</creator><creator>Putri, Wahyu Aristyaning</creator><creator>Purwestri, Yekti Asih</creator><creator>Swasono, Respati Tri</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1424-1609</orcidid><orcidid>https://orcid.org/0000-0002-8011-8396</orcidid><orcidid>https://orcid.org/0000-0002-7032-9253</orcidid><orcidid>https://orcid.org/0000-0003-0952-1956</orcidid><orcidid>https://orcid.org/0000-0002-0007-3301</orcidid><orcidid>https://orcid.org/0000-0002-3682-244X</orcidid></search><sort><creationdate>20231101</creationdate><title>Prediction of the interaction between Calloselasma rhodostoma venom-derived peptides and cancer-associated hub proteins: A computational study</title><author>Kusuma, Wisnu Ananta ; Fadli, Aulia ; Fatriani, Rizka ; Sofyantoro, Fajar ; Yudha, Donan Satria ; Lischer, Kenny ; Nuringtyas, Tri Rini ; Putri, Wahyu Aristyaning ; Purwestri, Yekti Asih ; Swasono, Respati Tri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-f5088d734b3c232495092f5219986513d9120ee9a89c8aea7e0623af7fb11c673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bioinformatics</topic><topic>Biomedical</topic><topic>Cancer</topic><topic>Deep learning</topic><topic>Peptide</topic><topic>Venom</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kusuma, Wisnu Ananta</creatorcontrib><creatorcontrib>Fadli, Aulia</creatorcontrib><creatorcontrib>Fatriani, Rizka</creatorcontrib><creatorcontrib>Sofyantoro, Fajar</creatorcontrib><creatorcontrib>Yudha, Donan Satria</creatorcontrib><creatorcontrib>Lischer, Kenny</creatorcontrib><creatorcontrib>Nuringtyas, Tri Rini</creatorcontrib><creatorcontrib>Putri, Wahyu Aristyaning</creatorcontrib><creatorcontrib>Purwestri, Yekti Asih</creatorcontrib><creatorcontrib>Swasono, Respati Tri</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Heliyon</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kusuma, Wisnu Ananta</au><au>Fadli, Aulia</au><au>Fatriani, Rizka</au><au>Sofyantoro, Fajar</au><au>Yudha, Donan Satria</au><au>Lischer, Kenny</au><au>Nuringtyas, Tri Rini</au><au>Putri, Wahyu Aristyaning</au><au>Purwestri, Yekti Asih</au><au>Swasono, Respati Tri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of the interaction between Calloselasma rhodostoma venom-derived peptides and cancer-associated hub proteins: A computational study</atitle><jtitle>Heliyon</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>9</volume><issue>11</issue><spage>e21149</spage><epage>e21149</epage><pages>e21149-e21149</pages><artnum>e21149</artnum><issn>2405-8440</issn><eissn>2405-8440</eissn><abstract>The use of peptide drugs to treat cancer is gaining popularity because of their efficacy, fewer side effects, and several advantages over other properties. Identifying the peptides that interact with cancer proteins is crucial in drug discovery. Several approaches related to predicting peptide-protein interactions have been conducted. However, problems arise due to the high costs of resources and time and the smaller number of studies. This study predicts peptide-protein interactions using Random Forest, XGBoost, and SAE-DNN. Feature extraction is also performed on proteins and peptides using intrinsic disorder, amino acid sequences, physicochemical properties, position-specific assessment matrices, amino acid composition, and dipeptide composition. Results show that all algorithms perform equally well in predicting interactions between peptides derived from venoms and target proteins associated with cancer. However, XGBoost produces the best results with accuracy, precision, and area under the receiver operating characteristic curve of 0.859, 0.663, and 0.697, respectively. The enrichment analysis revealed that peptides from the Calloselasma rhodostoma venom targeted several proteins (ESR1, GOPC, and BRD4) related to cancer.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.heliyon.2023.e21149</doi><orcidid>https://orcid.org/0000-0003-1424-1609</orcidid><orcidid>https://orcid.org/0000-0002-8011-8396</orcidid><orcidid>https://orcid.org/0000-0002-7032-9253</orcidid><orcidid>https://orcid.org/0000-0003-0952-1956</orcidid><orcidid>https://orcid.org/0000-0002-0007-3301</orcidid><orcidid>https://orcid.org/0000-0002-3682-244X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2405-8440 |
ispartof | Heliyon, 2023-11, Vol.9 (11), p.e21149-e21149, Article e21149 |
issn | 2405-8440 2405-8440 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_293db5b52b0e4b7d8b77d2fa327b3671 |
source | Elsevier ScienceDirect Journals; PubMed Central |
subjects | Bioinformatics Biomedical Cancer Deep learning Peptide Venom |
title | Prediction of the interaction between Calloselasma rhodostoma venom-derived peptides and cancer-associated hub proteins: A computational study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A17%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20the%20interaction%20between%20Calloselasma%20rhodostoma%20venom-derived%20peptides%20and%20cancer-associated%20hub%20proteins:%20A%20computational%20study&rft.jtitle=Heliyon&rft.au=Kusuma,%20Wisnu%20Ananta&rft.date=2023-11-01&rft.volume=9&rft.issue=11&rft.spage=e21149&rft.epage=e21149&rft.pages=e21149-e21149&rft.artnum=e21149&rft.issn=2405-8440&rft.eissn=2405-8440&rft_id=info:doi/10.1016/j.heliyon.2023.e21149&rft_dat=%3Cproquest_doaj_%3E2889589011%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c459t-f5088d734b3c232495092f5219986513d9120ee9a89c8aea7e0623af7fb11c673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2889589011&rft_id=info:pmid/&rfr_iscdi=true |