Loading…
Patient-Specific Analysis of Ascending Thoracic Aortic Aneurysm with the Living Heart Human Model
In ascending thoracic aortic aneurysms (ATAAs), aneurysm kinematics are driven by ventricular traction occurring every heartbeat, increasing the stress level of dilated aortic wall. Aortic elongation due to heart motion and aortic length are emerging as potential indicators of adverse events in ATAA...
Saved in:
Published in: | Bioengineering (Basel) 2021-11, Vol.8 (11), p.175 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c534t-248c41a41b5c379b859907d47947328bff9ca6d9f76a819f32e28de6c86156f83 |
---|---|
cites | cdi_FETCH-LOGICAL-c534t-248c41a41b5c379b859907d47947328bff9ca6d9f76a819f32e28de6c86156f83 |
container_end_page | |
container_issue | 11 |
container_start_page | 175 |
container_title | Bioengineering (Basel) |
container_volume | 8 |
creator | Cutugno, Salvatore Agnese, Valentina Gentile, Giovanni Raffa, Giuseppe M. Wisneski, Andrew D. Guccione, Julius M. Pilato, Michele Pasta, Salvatore |
description | In ascending thoracic aortic aneurysms (ATAAs), aneurysm kinematics are driven by ventricular traction occurring every heartbeat, increasing the stress level of dilated aortic wall. Aortic elongation due to heart motion and aortic length are emerging as potential indicators of adverse events in ATAAs; however, simulation of ATAA that takes into account the cardiac mechanics is technically challenging. The objective of this study was to adapt the realistic Living Heart Human Model (LHHM) to the anatomy and physiology of a patient with ATAA to assess the role of cardiac motion on aortic wall stress distribution. Patient-specific segmentation and material parameter estimation were done using preoperative computed tomography angiography (CTA) and ex vivo biaxial testing of the harvested tissue collected during surgery. The lumped-parameter model of systemic circulation implemented in the LHHM was refined using clinical and echocardiographic data. The results showed that the longitudinal stress was highest in the major curvature of the aneurysm, with specific aortic quadrants having stress levels change from tensile to compressive in a transmural direction. This study revealed the key role of heart motion that stretches the aortic root and increases ATAA wall tension. The ATAA LHHM is a realistic cardiovascular platform where patient-specific information can be easily integrated to assess the aneurysm biomechanics and potentially support the clinical management of patients with ATAAs. |
doi_str_mv | 10.3390/bioengineering8110175 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_296c278d7b5840da9b434272ed00976b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_296c278d7b5840da9b434272ed00976b</doaj_id><sourcerecordid>2602642194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-248c41a41b5c379b859907d47947328bff9ca6d9f76a819f32e28de6c86156f83</originalsourceid><addsrcrecordid>eNptkl1rFDEUhgdRbKn9CcKAN95Mm--PG2Ep6hZWFKzXIZOc2c0yk6zJTGX_vTO7Rax4lZDz8OTlnFNVbzG6oVSj2zYkiNsQAXKIW4UxwpK_qC4JRaLhlLOXf90vqutS9gghTAkngr2uLihTBEuGLyv7zY4B4th8P4ALXXD1Ktr-WEKpU1evioPo5y_qh13K1i3llMcTBVM-lqH-FcZdPe6g3oTHBVyDzWO9ngYb6y_JQ_-metXZvsD103lV_fj08eFu3Wy-fr6_W20axykbG8KUY9gy3HJHpW4V1xpJz6RmkhLVdp12VnjdSWEV1h0lQJQH4ZTAXHSKXlX3Z69Pdm8OOQw2H02ywZweUt4au0TvwRAtHJHKy5YrhrzVLaOMSAIeIS1FO7s-nF2HqR3Az00Ys-2fSZ9XYtiZbXo0SxiM9Sx4_yTI6ecEZTRDmHvZ9zZCmoohAs2TIFizGX33D7pPU56HcKKw1kQrMlP8TLmcSsnQ_QmDkVl2wvx3J-hvwR2rzQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601992982</pqid></control><display><type>article</type><title>Patient-Specific Analysis of Ascending Thoracic Aortic Aneurysm with the Living Heart Human Model</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Cutugno, Salvatore ; Agnese, Valentina ; Gentile, Giovanni ; Raffa, Giuseppe M. ; Wisneski, Andrew D. ; Guccione, Julius M. ; Pilato, Michele ; Pasta, Salvatore</creator><creatorcontrib>Cutugno, Salvatore ; Agnese, Valentina ; Gentile, Giovanni ; Raffa, Giuseppe M. ; Wisneski, Andrew D. ; Guccione, Julius M. ; Pilato, Michele ; Pasta, Salvatore</creatorcontrib><description>In ascending thoracic aortic aneurysms (ATAAs), aneurysm kinematics are driven by ventricular traction occurring every heartbeat, increasing the stress level of dilated aortic wall. Aortic elongation due to heart motion and aortic length are emerging as potential indicators of adverse events in ATAAs; however, simulation of ATAA that takes into account the cardiac mechanics is technically challenging. The objective of this study was to adapt the realistic Living Heart Human Model (LHHM) to the anatomy and physiology of a patient with ATAA to assess the role of cardiac motion on aortic wall stress distribution. Patient-specific segmentation and material parameter estimation were done using preoperative computed tomography angiography (CTA) and ex vivo biaxial testing of the harvested tissue collected during surgery. The lumped-parameter model of systemic circulation implemented in the LHHM was refined using clinical and echocardiographic data. The results showed that the longitudinal stress was highest in the major curvature of the aneurysm, with specific aortic quadrants having stress levels change from tensile to compressive in a transmural direction. This study revealed the key role of heart motion that stretches the aortic root and increases ATAA wall tension. The ATAA LHHM is a realistic cardiovascular platform where patient-specific information can be easily integrated to assess the aneurysm biomechanics and potentially support the clinical management of patients with ATAAs.</description><identifier>ISSN: 2306-5354</identifier><identifier>EISSN: 2306-5354</identifier><identifier>DOI: 10.3390/bioengineering8110175</identifier><identifier>PMID: 34821741</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adverse events ; Angiography ; Aorta ; Aortic aneurysms ; ascending aortic aneurysm ; Biaxial tests ; Bioengineering ; Biomechanics ; cardiac mechanics ; Computed tomography ; Coronary vessels ; Dissection ; Elongation ; finite element analysis ; Geometry ; Heart ; Kinematics ; living heart human model ; Mathematical models ; Medical imaging ; Mortality ; Parameter estimation ; Patients ; Pulmonary arteries ; Segmentation ; Software ; Stress distribution ; Thorax ; Ventricle</subject><ispartof>Bioengineering (Basel), 2021-11, Vol.8 (11), p.175</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-248c41a41b5c379b859907d47947328bff9ca6d9f76a819f32e28de6c86156f83</citedby><cites>FETCH-LOGICAL-c534t-248c41a41b5c379b859907d47947328bff9ca6d9f76a819f32e28de6c86156f83</cites><orcidid>0000-0002-4841-2560 ; 0000-0003-3767-815X ; 0000-0001-7141-2561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2601992982/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2601992982?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids></links><search><creatorcontrib>Cutugno, Salvatore</creatorcontrib><creatorcontrib>Agnese, Valentina</creatorcontrib><creatorcontrib>Gentile, Giovanni</creatorcontrib><creatorcontrib>Raffa, Giuseppe M.</creatorcontrib><creatorcontrib>Wisneski, Andrew D.</creatorcontrib><creatorcontrib>Guccione, Julius M.</creatorcontrib><creatorcontrib>Pilato, Michele</creatorcontrib><creatorcontrib>Pasta, Salvatore</creatorcontrib><title>Patient-Specific Analysis of Ascending Thoracic Aortic Aneurysm with the Living Heart Human Model</title><title>Bioengineering (Basel)</title><description>In ascending thoracic aortic aneurysms (ATAAs), aneurysm kinematics are driven by ventricular traction occurring every heartbeat, increasing the stress level of dilated aortic wall. Aortic elongation due to heart motion and aortic length are emerging as potential indicators of adverse events in ATAAs; however, simulation of ATAA that takes into account the cardiac mechanics is technically challenging. The objective of this study was to adapt the realistic Living Heart Human Model (LHHM) to the anatomy and physiology of a patient with ATAA to assess the role of cardiac motion on aortic wall stress distribution. Patient-specific segmentation and material parameter estimation were done using preoperative computed tomography angiography (CTA) and ex vivo biaxial testing of the harvested tissue collected during surgery. The lumped-parameter model of systemic circulation implemented in the LHHM was refined using clinical and echocardiographic data. The results showed that the longitudinal stress was highest in the major curvature of the aneurysm, with specific aortic quadrants having stress levels change from tensile to compressive in a transmural direction. This study revealed the key role of heart motion that stretches the aortic root and increases ATAA wall tension. The ATAA LHHM is a realistic cardiovascular platform where patient-specific information can be easily integrated to assess the aneurysm biomechanics and potentially support the clinical management of patients with ATAAs.</description><subject>Adverse events</subject><subject>Angiography</subject><subject>Aorta</subject><subject>Aortic aneurysms</subject><subject>ascending aortic aneurysm</subject><subject>Biaxial tests</subject><subject>Bioengineering</subject><subject>Biomechanics</subject><subject>cardiac mechanics</subject><subject>Computed tomography</subject><subject>Coronary vessels</subject><subject>Dissection</subject><subject>Elongation</subject><subject>finite element analysis</subject><subject>Geometry</subject><subject>Heart</subject><subject>Kinematics</subject><subject>living heart human model</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>Mortality</subject><subject>Parameter estimation</subject><subject>Patients</subject><subject>Pulmonary arteries</subject><subject>Segmentation</subject><subject>Software</subject><subject>Stress distribution</subject><subject>Thorax</subject><subject>Ventricle</subject><issn>2306-5354</issn><issn>2306-5354</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl1rFDEUhgdRbKn9CcKAN95Mm--PG2Ep6hZWFKzXIZOc2c0yk6zJTGX_vTO7Rax4lZDz8OTlnFNVbzG6oVSj2zYkiNsQAXKIW4UxwpK_qC4JRaLhlLOXf90vqutS9gghTAkngr2uLihTBEuGLyv7zY4B4th8P4ALXXD1Ktr-WEKpU1evioPo5y_qh13K1i3llMcTBVM-lqH-FcZdPe6g3oTHBVyDzWO9ngYb6y_JQ_-metXZvsD103lV_fj08eFu3Wy-fr6_W20axykbG8KUY9gy3HJHpW4V1xpJz6RmkhLVdp12VnjdSWEV1h0lQJQH4ZTAXHSKXlX3Z69Pdm8OOQw2H02ywZweUt4au0TvwRAtHJHKy5YrhrzVLaOMSAIeIS1FO7s-nF2HqR3Az00Ys-2fSZ9XYtiZbXo0SxiM9Sx4_yTI6ecEZTRDmHvZ9zZCmoohAs2TIFizGX33D7pPU56HcKKw1kQrMlP8TLmcSsnQ_QmDkVl2wvx3J-hvwR2rzQ</recordid><startdate>20211104</startdate><enddate>20211104</enddate><creator>Cutugno, Salvatore</creator><creator>Agnese, Valentina</creator><creator>Gentile, Giovanni</creator><creator>Raffa, Giuseppe M.</creator><creator>Wisneski, Andrew D.</creator><creator>Guccione, Julius M.</creator><creator>Pilato, Michele</creator><creator>Pasta, Salvatore</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4841-2560</orcidid><orcidid>https://orcid.org/0000-0003-3767-815X</orcidid><orcidid>https://orcid.org/0000-0001-7141-2561</orcidid></search><sort><creationdate>20211104</creationdate><title>Patient-Specific Analysis of Ascending Thoracic Aortic Aneurysm with the Living Heart Human Model</title><author>Cutugno, Salvatore ; Agnese, Valentina ; Gentile, Giovanni ; Raffa, Giuseppe M. ; Wisneski, Andrew D. ; Guccione, Julius M. ; Pilato, Michele ; Pasta, Salvatore</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-248c41a41b5c379b859907d47947328bff9ca6d9f76a819f32e28de6c86156f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adverse events</topic><topic>Angiography</topic><topic>Aorta</topic><topic>Aortic aneurysms</topic><topic>ascending aortic aneurysm</topic><topic>Biaxial tests</topic><topic>Bioengineering</topic><topic>Biomechanics</topic><topic>cardiac mechanics</topic><topic>Computed tomography</topic><topic>Coronary vessels</topic><topic>Dissection</topic><topic>Elongation</topic><topic>finite element analysis</topic><topic>Geometry</topic><topic>Heart</topic><topic>Kinematics</topic><topic>living heart human model</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>Mortality</topic><topic>Parameter estimation</topic><topic>Patients</topic><topic>Pulmonary arteries</topic><topic>Segmentation</topic><topic>Software</topic><topic>Stress distribution</topic><topic>Thorax</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cutugno, Salvatore</creatorcontrib><creatorcontrib>Agnese, Valentina</creatorcontrib><creatorcontrib>Gentile, Giovanni</creatorcontrib><creatorcontrib>Raffa, Giuseppe M.</creatorcontrib><creatorcontrib>Wisneski, Andrew D.</creatorcontrib><creatorcontrib>Guccione, Julius M.</creatorcontrib><creatorcontrib>Pilato, Michele</creatorcontrib><creatorcontrib>Pasta, Salvatore</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Bioengineering (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cutugno, Salvatore</au><au>Agnese, Valentina</au><au>Gentile, Giovanni</au><au>Raffa, Giuseppe M.</au><au>Wisneski, Andrew D.</au><au>Guccione, Julius M.</au><au>Pilato, Michele</au><au>Pasta, Salvatore</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patient-Specific Analysis of Ascending Thoracic Aortic Aneurysm with the Living Heart Human Model</atitle><jtitle>Bioengineering (Basel)</jtitle><date>2021-11-04</date><risdate>2021</risdate><volume>8</volume><issue>11</issue><spage>175</spage><pages>175-</pages><issn>2306-5354</issn><eissn>2306-5354</eissn><abstract>In ascending thoracic aortic aneurysms (ATAAs), aneurysm kinematics are driven by ventricular traction occurring every heartbeat, increasing the stress level of dilated aortic wall. Aortic elongation due to heart motion and aortic length are emerging as potential indicators of adverse events in ATAAs; however, simulation of ATAA that takes into account the cardiac mechanics is technically challenging. The objective of this study was to adapt the realistic Living Heart Human Model (LHHM) to the anatomy and physiology of a patient with ATAA to assess the role of cardiac motion on aortic wall stress distribution. Patient-specific segmentation and material parameter estimation were done using preoperative computed tomography angiography (CTA) and ex vivo biaxial testing of the harvested tissue collected during surgery. The lumped-parameter model of systemic circulation implemented in the LHHM was refined using clinical and echocardiographic data. The results showed that the longitudinal stress was highest in the major curvature of the aneurysm, with specific aortic quadrants having stress levels change from tensile to compressive in a transmural direction. This study revealed the key role of heart motion that stretches the aortic root and increases ATAA wall tension. The ATAA LHHM is a realistic cardiovascular platform where patient-specific information can be easily integrated to assess the aneurysm biomechanics and potentially support the clinical management of patients with ATAAs.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34821741</pmid><doi>10.3390/bioengineering8110175</doi><orcidid>https://orcid.org/0000-0002-4841-2560</orcidid><orcidid>https://orcid.org/0000-0003-3767-815X</orcidid><orcidid>https://orcid.org/0000-0001-7141-2561</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2306-5354 |
ispartof | Bioengineering (Basel), 2021-11, Vol.8 (11), p.175 |
issn | 2306-5354 2306-5354 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_296c278d7b5840da9b434272ed00976b |
source | Publicly Available Content Database; PubMed Central |
subjects | Adverse events Angiography Aorta Aortic aneurysms ascending aortic aneurysm Biaxial tests Bioengineering Biomechanics cardiac mechanics Computed tomography Coronary vessels Dissection Elongation finite element analysis Geometry Heart Kinematics living heart human model Mathematical models Medical imaging Mortality Parameter estimation Patients Pulmonary arteries Segmentation Software Stress distribution Thorax Ventricle |
title | Patient-Specific Analysis of Ascending Thoracic Aortic Aneurysm with the Living Heart Human Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T21%3A01%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patient-Specific%20Analysis%20of%20Ascending%20Thoracic%20Aortic%20Aneurysm%20with%20the%20Living%20Heart%20Human%20Model&rft.jtitle=Bioengineering%20(Basel)&rft.au=Cutugno,%20Salvatore&rft.date=2021-11-04&rft.volume=8&rft.issue=11&rft.spage=175&rft.pages=175-&rft.issn=2306-5354&rft.eissn=2306-5354&rft_id=info:doi/10.3390/bioengineering8110175&rft_dat=%3Cproquest_doaj_%3E2602642194%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c534t-248c41a41b5c379b859907d47947328bff9ca6d9f76a819f32e28de6c86156f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2601992982&rft_id=info:pmid/34821741&rfr_iscdi=true |