Loading…

Patient-Specific Analysis of Ascending Thoracic Aortic Aneurysm with the Living Heart Human Model

In ascending thoracic aortic aneurysms (ATAAs), aneurysm kinematics are driven by ventricular traction occurring every heartbeat, increasing the stress level of dilated aortic wall. Aortic elongation due to heart motion and aortic length are emerging as potential indicators of adverse events in ATAA...

Full description

Saved in:
Bibliographic Details
Published in:Bioengineering (Basel) 2021-11, Vol.8 (11), p.175
Main Authors: Cutugno, Salvatore, Agnese, Valentina, Gentile, Giovanni, Raffa, Giuseppe M., Wisneski, Andrew D., Guccione, Julius M., Pilato, Michele, Pasta, Salvatore
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c534t-248c41a41b5c379b859907d47947328bff9ca6d9f76a819f32e28de6c86156f83
cites cdi_FETCH-LOGICAL-c534t-248c41a41b5c379b859907d47947328bff9ca6d9f76a819f32e28de6c86156f83
container_end_page
container_issue 11
container_start_page 175
container_title Bioengineering (Basel)
container_volume 8
creator Cutugno, Salvatore
Agnese, Valentina
Gentile, Giovanni
Raffa, Giuseppe M.
Wisneski, Andrew D.
Guccione, Julius M.
Pilato, Michele
Pasta, Salvatore
description In ascending thoracic aortic aneurysms (ATAAs), aneurysm kinematics are driven by ventricular traction occurring every heartbeat, increasing the stress level of dilated aortic wall. Aortic elongation due to heart motion and aortic length are emerging as potential indicators of adverse events in ATAAs; however, simulation of ATAA that takes into account the cardiac mechanics is technically challenging. The objective of this study was to adapt the realistic Living Heart Human Model (LHHM) to the anatomy and physiology of a patient with ATAA to assess the role of cardiac motion on aortic wall stress distribution. Patient-specific segmentation and material parameter estimation were done using preoperative computed tomography angiography (CTA) and ex vivo biaxial testing of the harvested tissue collected during surgery. The lumped-parameter model of systemic circulation implemented in the LHHM was refined using clinical and echocardiographic data. The results showed that the longitudinal stress was highest in the major curvature of the aneurysm, with specific aortic quadrants having stress levels change from tensile to compressive in a transmural direction. This study revealed the key role of heart motion that stretches the aortic root and increases ATAA wall tension. The ATAA LHHM is a realistic cardiovascular platform where patient-specific information can be easily integrated to assess the aneurysm biomechanics and potentially support the clinical management of patients with ATAAs.
doi_str_mv 10.3390/bioengineering8110175
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_296c278d7b5840da9b434272ed00976b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_296c278d7b5840da9b434272ed00976b</doaj_id><sourcerecordid>2602642194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-248c41a41b5c379b859907d47947328bff9ca6d9f76a819f32e28de6c86156f83</originalsourceid><addsrcrecordid>eNptkl1rFDEUhgdRbKn9CcKAN95Mm--PG2Ep6hZWFKzXIZOc2c0yk6zJTGX_vTO7Rax4lZDz8OTlnFNVbzG6oVSj2zYkiNsQAXKIW4UxwpK_qC4JRaLhlLOXf90vqutS9gghTAkngr2uLihTBEuGLyv7zY4B4th8P4ALXXD1Ktr-WEKpU1evioPo5y_qh13K1i3llMcTBVM-lqH-FcZdPe6g3oTHBVyDzWO9ngYb6y_JQ_-metXZvsD103lV_fj08eFu3Wy-fr6_W20axykbG8KUY9gy3HJHpW4V1xpJz6RmkhLVdp12VnjdSWEV1h0lQJQH4ZTAXHSKXlX3Z69Pdm8OOQw2H02ywZweUt4au0TvwRAtHJHKy5YrhrzVLaOMSAIeIS1FO7s-nF2HqR3Az00Ys-2fSZ9XYtiZbXo0SxiM9Sx4_yTI6ecEZTRDmHvZ9zZCmoohAs2TIFizGX33D7pPU56HcKKw1kQrMlP8TLmcSsnQ_QmDkVl2wvx3J-hvwR2rzQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601992982</pqid></control><display><type>article</type><title>Patient-Specific Analysis of Ascending Thoracic Aortic Aneurysm with the Living Heart Human Model</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Cutugno, Salvatore ; Agnese, Valentina ; Gentile, Giovanni ; Raffa, Giuseppe M. ; Wisneski, Andrew D. ; Guccione, Julius M. ; Pilato, Michele ; Pasta, Salvatore</creator><creatorcontrib>Cutugno, Salvatore ; Agnese, Valentina ; Gentile, Giovanni ; Raffa, Giuseppe M. ; Wisneski, Andrew D. ; Guccione, Julius M. ; Pilato, Michele ; Pasta, Salvatore</creatorcontrib><description>In ascending thoracic aortic aneurysms (ATAAs), aneurysm kinematics are driven by ventricular traction occurring every heartbeat, increasing the stress level of dilated aortic wall. Aortic elongation due to heart motion and aortic length are emerging as potential indicators of adverse events in ATAAs; however, simulation of ATAA that takes into account the cardiac mechanics is technically challenging. The objective of this study was to adapt the realistic Living Heart Human Model (LHHM) to the anatomy and physiology of a patient with ATAA to assess the role of cardiac motion on aortic wall stress distribution. Patient-specific segmentation and material parameter estimation were done using preoperative computed tomography angiography (CTA) and ex vivo biaxial testing of the harvested tissue collected during surgery. The lumped-parameter model of systemic circulation implemented in the LHHM was refined using clinical and echocardiographic data. The results showed that the longitudinal stress was highest in the major curvature of the aneurysm, with specific aortic quadrants having stress levels change from tensile to compressive in a transmural direction. This study revealed the key role of heart motion that stretches the aortic root and increases ATAA wall tension. The ATAA LHHM is a realistic cardiovascular platform where patient-specific information can be easily integrated to assess the aneurysm biomechanics and potentially support the clinical management of patients with ATAAs.</description><identifier>ISSN: 2306-5354</identifier><identifier>EISSN: 2306-5354</identifier><identifier>DOI: 10.3390/bioengineering8110175</identifier><identifier>PMID: 34821741</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adverse events ; Angiography ; Aorta ; Aortic aneurysms ; ascending aortic aneurysm ; Biaxial tests ; Bioengineering ; Biomechanics ; cardiac mechanics ; Computed tomography ; Coronary vessels ; Dissection ; Elongation ; finite element analysis ; Geometry ; Heart ; Kinematics ; living heart human model ; Mathematical models ; Medical imaging ; Mortality ; Parameter estimation ; Patients ; Pulmonary arteries ; Segmentation ; Software ; Stress distribution ; Thorax ; Ventricle</subject><ispartof>Bioengineering (Basel), 2021-11, Vol.8 (11), p.175</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-248c41a41b5c379b859907d47947328bff9ca6d9f76a819f32e28de6c86156f83</citedby><cites>FETCH-LOGICAL-c534t-248c41a41b5c379b859907d47947328bff9ca6d9f76a819f32e28de6c86156f83</cites><orcidid>0000-0002-4841-2560 ; 0000-0003-3767-815X ; 0000-0001-7141-2561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2601992982/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2601992982?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids></links><search><creatorcontrib>Cutugno, Salvatore</creatorcontrib><creatorcontrib>Agnese, Valentina</creatorcontrib><creatorcontrib>Gentile, Giovanni</creatorcontrib><creatorcontrib>Raffa, Giuseppe M.</creatorcontrib><creatorcontrib>Wisneski, Andrew D.</creatorcontrib><creatorcontrib>Guccione, Julius M.</creatorcontrib><creatorcontrib>Pilato, Michele</creatorcontrib><creatorcontrib>Pasta, Salvatore</creatorcontrib><title>Patient-Specific Analysis of Ascending Thoracic Aortic Aneurysm with the Living Heart Human Model</title><title>Bioengineering (Basel)</title><description>In ascending thoracic aortic aneurysms (ATAAs), aneurysm kinematics are driven by ventricular traction occurring every heartbeat, increasing the stress level of dilated aortic wall. Aortic elongation due to heart motion and aortic length are emerging as potential indicators of adverse events in ATAAs; however, simulation of ATAA that takes into account the cardiac mechanics is technically challenging. The objective of this study was to adapt the realistic Living Heart Human Model (LHHM) to the anatomy and physiology of a patient with ATAA to assess the role of cardiac motion on aortic wall stress distribution. Patient-specific segmentation and material parameter estimation were done using preoperative computed tomography angiography (CTA) and ex vivo biaxial testing of the harvested tissue collected during surgery. The lumped-parameter model of systemic circulation implemented in the LHHM was refined using clinical and echocardiographic data. The results showed that the longitudinal stress was highest in the major curvature of the aneurysm, with specific aortic quadrants having stress levels change from tensile to compressive in a transmural direction. This study revealed the key role of heart motion that stretches the aortic root and increases ATAA wall tension. The ATAA LHHM is a realistic cardiovascular platform where patient-specific information can be easily integrated to assess the aneurysm biomechanics and potentially support the clinical management of patients with ATAAs.</description><subject>Adverse events</subject><subject>Angiography</subject><subject>Aorta</subject><subject>Aortic aneurysms</subject><subject>ascending aortic aneurysm</subject><subject>Biaxial tests</subject><subject>Bioengineering</subject><subject>Biomechanics</subject><subject>cardiac mechanics</subject><subject>Computed tomography</subject><subject>Coronary vessels</subject><subject>Dissection</subject><subject>Elongation</subject><subject>finite element analysis</subject><subject>Geometry</subject><subject>Heart</subject><subject>Kinematics</subject><subject>living heart human model</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>Mortality</subject><subject>Parameter estimation</subject><subject>Patients</subject><subject>Pulmonary arteries</subject><subject>Segmentation</subject><subject>Software</subject><subject>Stress distribution</subject><subject>Thorax</subject><subject>Ventricle</subject><issn>2306-5354</issn><issn>2306-5354</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl1rFDEUhgdRbKn9CcKAN95Mm--PG2Ep6hZWFKzXIZOc2c0yk6zJTGX_vTO7Rax4lZDz8OTlnFNVbzG6oVSj2zYkiNsQAXKIW4UxwpK_qC4JRaLhlLOXf90vqutS9gghTAkngr2uLihTBEuGLyv7zY4B4th8P4ALXXD1Ktr-WEKpU1evioPo5y_qh13K1i3llMcTBVM-lqH-FcZdPe6g3oTHBVyDzWO9ngYb6y_JQ_-metXZvsD103lV_fj08eFu3Wy-fr6_W20axykbG8KUY9gy3HJHpW4V1xpJz6RmkhLVdp12VnjdSWEV1h0lQJQH4ZTAXHSKXlX3Z69Pdm8OOQw2H02ywZweUt4au0TvwRAtHJHKy5YrhrzVLaOMSAIeIS1FO7s-nF2HqR3Az00Ys-2fSZ9XYtiZbXo0SxiM9Sx4_yTI6ecEZTRDmHvZ9zZCmoohAs2TIFizGX33D7pPU56HcKKw1kQrMlP8TLmcSsnQ_QmDkVl2wvx3J-hvwR2rzQ</recordid><startdate>20211104</startdate><enddate>20211104</enddate><creator>Cutugno, Salvatore</creator><creator>Agnese, Valentina</creator><creator>Gentile, Giovanni</creator><creator>Raffa, Giuseppe M.</creator><creator>Wisneski, Andrew D.</creator><creator>Guccione, Julius M.</creator><creator>Pilato, Michele</creator><creator>Pasta, Salvatore</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4841-2560</orcidid><orcidid>https://orcid.org/0000-0003-3767-815X</orcidid><orcidid>https://orcid.org/0000-0001-7141-2561</orcidid></search><sort><creationdate>20211104</creationdate><title>Patient-Specific Analysis of Ascending Thoracic Aortic Aneurysm with the Living Heart Human Model</title><author>Cutugno, Salvatore ; Agnese, Valentina ; Gentile, Giovanni ; Raffa, Giuseppe M. ; Wisneski, Andrew D. ; Guccione, Julius M. ; Pilato, Michele ; Pasta, Salvatore</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-248c41a41b5c379b859907d47947328bff9ca6d9f76a819f32e28de6c86156f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adverse events</topic><topic>Angiography</topic><topic>Aorta</topic><topic>Aortic aneurysms</topic><topic>ascending aortic aneurysm</topic><topic>Biaxial tests</topic><topic>Bioengineering</topic><topic>Biomechanics</topic><topic>cardiac mechanics</topic><topic>Computed tomography</topic><topic>Coronary vessels</topic><topic>Dissection</topic><topic>Elongation</topic><topic>finite element analysis</topic><topic>Geometry</topic><topic>Heart</topic><topic>Kinematics</topic><topic>living heart human model</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>Mortality</topic><topic>Parameter estimation</topic><topic>Patients</topic><topic>Pulmonary arteries</topic><topic>Segmentation</topic><topic>Software</topic><topic>Stress distribution</topic><topic>Thorax</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cutugno, Salvatore</creatorcontrib><creatorcontrib>Agnese, Valentina</creatorcontrib><creatorcontrib>Gentile, Giovanni</creatorcontrib><creatorcontrib>Raffa, Giuseppe M.</creatorcontrib><creatorcontrib>Wisneski, Andrew D.</creatorcontrib><creatorcontrib>Guccione, Julius M.</creatorcontrib><creatorcontrib>Pilato, Michele</creatorcontrib><creatorcontrib>Pasta, Salvatore</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Bioengineering (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cutugno, Salvatore</au><au>Agnese, Valentina</au><au>Gentile, Giovanni</au><au>Raffa, Giuseppe M.</au><au>Wisneski, Andrew D.</au><au>Guccione, Julius M.</au><au>Pilato, Michele</au><au>Pasta, Salvatore</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patient-Specific Analysis of Ascending Thoracic Aortic Aneurysm with the Living Heart Human Model</atitle><jtitle>Bioengineering (Basel)</jtitle><date>2021-11-04</date><risdate>2021</risdate><volume>8</volume><issue>11</issue><spage>175</spage><pages>175-</pages><issn>2306-5354</issn><eissn>2306-5354</eissn><abstract>In ascending thoracic aortic aneurysms (ATAAs), aneurysm kinematics are driven by ventricular traction occurring every heartbeat, increasing the stress level of dilated aortic wall. Aortic elongation due to heart motion and aortic length are emerging as potential indicators of adverse events in ATAAs; however, simulation of ATAA that takes into account the cardiac mechanics is technically challenging. The objective of this study was to adapt the realistic Living Heart Human Model (LHHM) to the anatomy and physiology of a patient with ATAA to assess the role of cardiac motion on aortic wall stress distribution. Patient-specific segmentation and material parameter estimation were done using preoperative computed tomography angiography (CTA) and ex vivo biaxial testing of the harvested tissue collected during surgery. The lumped-parameter model of systemic circulation implemented in the LHHM was refined using clinical and echocardiographic data. The results showed that the longitudinal stress was highest in the major curvature of the aneurysm, with specific aortic quadrants having stress levels change from tensile to compressive in a transmural direction. This study revealed the key role of heart motion that stretches the aortic root and increases ATAA wall tension. The ATAA LHHM is a realistic cardiovascular platform where patient-specific information can be easily integrated to assess the aneurysm biomechanics and potentially support the clinical management of patients with ATAAs.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34821741</pmid><doi>10.3390/bioengineering8110175</doi><orcidid>https://orcid.org/0000-0002-4841-2560</orcidid><orcidid>https://orcid.org/0000-0003-3767-815X</orcidid><orcidid>https://orcid.org/0000-0001-7141-2561</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2306-5354
ispartof Bioengineering (Basel), 2021-11, Vol.8 (11), p.175
issn 2306-5354
2306-5354
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_296c278d7b5840da9b434272ed00976b
source Publicly Available Content Database; PubMed Central
subjects Adverse events
Angiography
Aorta
Aortic aneurysms
ascending aortic aneurysm
Biaxial tests
Bioengineering
Biomechanics
cardiac mechanics
Computed tomography
Coronary vessels
Dissection
Elongation
finite element analysis
Geometry
Heart
Kinematics
living heart human model
Mathematical models
Medical imaging
Mortality
Parameter estimation
Patients
Pulmonary arteries
Segmentation
Software
Stress distribution
Thorax
Ventricle
title Patient-Specific Analysis of Ascending Thoracic Aortic Aneurysm with the Living Heart Human Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T21%3A01%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patient-Specific%20Analysis%20of%20Ascending%20Thoracic%20Aortic%20Aneurysm%20with%20the%20Living%20Heart%20Human%20Model&rft.jtitle=Bioengineering%20(Basel)&rft.au=Cutugno,%20Salvatore&rft.date=2021-11-04&rft.volume=8&rft.issue=11&rft.spage=175&rft.pages=175-&rft.issn=2306-5354&rft.eissn=2306-5354&rft_id=info:doi/10.3390/bioengineering8110175&rft_dat=%3Cproquest_doaj_%3E2602642194%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c534t-248c41a41b5c379b859907d47947328bff9ca6d9f76a819f32e28de6c86156f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2601992982&rft_id=info:pmid/34821741&rfr_iscdi=true