Loading…
High entropy oxides for reversible lithium-ion battery: a brief review
Multicomponent systems were proposed in 2004 with tremendous potential in various applications. The central idea was to enhance the configurational contribution to entropy of a (nearly) equiatomic mixture of element to achieve invariability. In 2015, this concept of entropy induced stabilization was...
Saved in:
Published in: | Materials research express 2024-07, Vol.11 (7), p.72003 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multicomponent systems were proposed in 2004 with tremendous potential in various applications. The central idea was to enhance the configurational contribution to entropy of a (nearly) equiatomic mixture of element to achieve invariability. In 2015, this concept of entropy induced stabilization was illustrated in a blend of oxides. Following this, other entropy stabilized oxides were studied, exploding in the vast composition space with materials showing enhanced properties. These systems were adept in wide range of technologies ranging from thermal barrier coatings, ultra-high temperature refractories, wear and corrosion resistant coatings, catalysts, thermoelectrics, and electrochemical energy storage systems (EES). We will walk through the recent developments in high entropy oxides for reversible energy storage in this review, looking at the high entropy attributes that enhance their electrochemical capabilities. The influence of entropy can no longer be avoided in ceramics and will be crucial to the advancement of sustainable technologies in the future. |
---|---|
ISSN: | 2053-1591 2053-1591 |
DOI: | 10.1088/2053-1591/ad5bc2 |