Loading…
Environmental damping and vibrational coupling of confined fluids within isolated carbon nanotubes
Because of their large surface areas, nanotubes and nanowires demonstrate exquisite mechanical coupling to their surroundings, promising advanced sensors and nanomechanical devices. However, this environmental sensitivity has resulted in several ambiguous observations of vibrational coupling across...
Saved in:
Published in: | Nature communications 2024-07, Vol.15 (1), p.5605-12, Article 5605 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c405t-5919bf18ecc2b0e593f03e7f415346754984a7a2725c1b71e82d85ca62fdd0a3 |
container_end_page | 12 |
container_issue | 1 |
container_start_page | 5605 |
container_title | Nature communications |
container_volume | 15 |
creator | Tu, Yu-Ming Kuehne, Matthias Misra, Rahul Prasanna Ritt, Cody L. Oliaei, Hananeh Faucher, Samuel Li, Haokun Xu, Xintong Penn, Aubrey Yang, Sungyun Yang, Jing Fan Sendgikoski, Kyle Chakraverty, Joshika Cumings, John Majumdar, Arun Aluru, Narayana R. Hachtel, Jordan A. Blankschtein, Daniel Strano, Michael S. |
description | Because of their large surface areas, nanotubes and nanowires demonstrate exquisite mechanical coupling to their surroundings, promising advanced sensors and nanomechanical devices. However, this environmental sensitivity has resulted in several ambiguous observations of vibrational coupling across various experiments. Herein, we demonstrate a temperature-dependent Radial Breathing Mode (RBM) frequency in free-standing, electron-diffraction-assigned Double-Walled Carbon Nanotubes (DWNTs) that shows an unexpected and thermally reversible frequency downshift of 10 to 15%, for systems isolated in vacuum. An analysis based on a harmonic oscillator model assigns the distinctive frequency cusp, produced over 93 scans of 3 distinct DWNTs, along with the hyperbolic trajectory, to a reversible increase in damping from graphitic ribbons on the exterior surface. Strain-dependent coupling from self-tensioned, suspended DWNTs maintains the ratio of spring-to-damping frequencies, producing a stable saturation of RBM in the low-tension limit. In contrast, when the interior of DWNTs is subjected to a water-filling process, the RBM thermal trajectory is altered to that of a Langmuir isobar and elliptical trajectories, allowing measurement of the enthalpy of confined fluid phase change. These mechanisms and quantitative theory provide new insights into the environmental coupling of nanomechanical systems and the implications for devices and nanofluidic conduits.
Nanotubes exhibit high vibrational coupling to the environment but lack a theoretical description. Vacuum-isolated, suspended double walled nanotubes provide a damping model for mass coupling, offering new nanomechanics and nanofluidics insights. |
doi_str_mv | 10.1038/s41467-024-49661-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2979459d7aad40beb2c5e4edc57e2c32</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2979459d7aad40beb2c5e4edc57e2c32</doaj_id><sourcerecordid>3075701926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-5919bf18ecc2b0e593f03e7f415346754984a7a2725c1b71e82d85ca62fdd0a3</originalsourceid><addsrcrecordid>eNp9UstuFDEQHCEQiUJ-gAMawYXLgJ9j-4RQFCBSJC65W-3H7Ho1ay-2ZxF_j5MJIeGAL7aqq6vd3dV1rzH6gBGVHwvDbBQDImxgahzxIJ91pwQxPGBB6PNH75PuvJQdaocqLBl72Z1QqUaMJD3tzGU8hpzi3scKc-9gfwhx00N0_TGYDDWk2HCblsN8G0hTe8cpRO_6aV6CK_3PULch9qGkGWqDLWSTYh8hproYX151LyaYiz-_v8-6my-XNxffhuvvX68uPl8PliFeB66wMhOW3lpikOeKToh6MTHMaeuUMyUZCCCCcIuNwF4SJ7mFkUzOIaBn3dUq6xLs9CGHPeRfOkHQd0DKGw25Bjt7TZRQjCsnABxDxhtiuWfeWS48sZQ0rU-r1mEx-4a34WSYn4g-jcSw1Zt01BgTQtjImsLbVSGVGnSxoXq7bZOL3lZN2iKQVI30_r5MTj8WX6reh2L9PEP0aSmaIsEFwoqMjfruH-ouLbmtZmUx1caDGousLJtTKdlPD1_GSN_aRq-20c02-s42WrakN4-bfUj5Y5JGoCuhtFDc-Py39n9kfwOX-85r</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075494980</pqid></control><display><type>article</type><title>Environmental damping and vibrational coupling of confined fluids within isolated carbon nanotubes</title><source>Nature_系列刊</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Tu, Yu-Ming ; Kuehne, Matthias ; Misra, Rahul Prasanna ; Ritt, Cody L. ; Oliaei, Hananeh ; Faucher, Samuel ; Li, Haokun ; Xu, Xintong ; Penn, Aubrey ; Yang, Sungyun ; Yang, Jing Fan ; Sendgikoski, Kyle ; Chakraverty, Joshika ; Cumings, John ; Majumdar, Arun ; Aluru, Narayana R. ; Hachtel, Jordan A. ; Blankschtein, Daniel ; Strano, Michael S.</creator><creatorcontrib>Tu, Yu-Ming ; Kuehne, Matthias ; Misra, Rahul Prasanna ; Ritt, Cody L. ; Oliaei, Hananeh ; Faucher, Samuel ; Li, Haokun ; Xu, Xintong ; Penn, Aubrey ; Yang, Sungyun ; Yang, Jing Fan ; Sendgikoski, Kyle ; Chakraverty, Joshika ; Cumings, John ; Majumdar, Arun ; Aluru, Narayana R. ; Hachtel, Jordan A. ; Blankschtein, Daniel ; Strano, Michael S. ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Because of their large surface areas, nanotubes and nanowires demonstrate exquisite mechanical coupling to their surroundings, promising advanced sensors and nanomechanical devices. However, this environmental sensitivity has resulted in several ambiguous observations of vibrational coupling across various experiments. Herein, we demonstrate a temperature-dependent Radial Breathing Mode (RBM) frequency in free-standing, electron-diffraction-assigned Double-Walled Carbon Nanotubes (DWNTs) that shows an unexpected and thermally reversible frequency downshift of 10 to 15%, for systems isolated in vacuum. An analysis based on a harmonic oscillator model assigns the distinctive frequency cusp, produced over 93 scans of 3 distinct DWNTs, along with the hyperbolic trajectory, to a reversible increase in damping from graphitic ribbons on the exterior surface. Strain-dependent coupling from self-tensioned, suspended DWNTs maintains the ratio of spring-to-damping frequencies, producing a stable saturation of RBM in the low-tension limit. In contrast, when the interior of DWNTs is subjected to a water-filling process, the RBM thermal trajectory is altered to that of a Langmuir isobar and elliptical trajectories, allowing measurement of the enthalpy of confined fluid phase change. These mechanisms and quantitative theory provide new insights into the environmental coupling of nanomechanical systems and the implications for devices and nanofluidic conduits.
Nanotubes exhibit high vibrational coupling to the environment but lack a theoretical description. Vacuum-isolated, suspended double walled nanotubes provide a damping model for mass coupling, offering new nanomechanics and nanofluidics insights.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-49661-8</identifier><identifier>PMID: 38961083</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/133 ; 147/143 ; 147/28 ; 639/925/357/73 ; 639/925/927/351 ; 639/925/930/12 ; Carbon ; Coupling ; Damping ; Electrons ; Enthalpy ; Experiments ; Fluidics ; Harmonic oscillators ; High temperature ; Humanities and Social Sciences ; Hyperbolic trajectories ; MATERIALS SCIENCE ; Mechanical properties ; Multi wall carbon nanotubes ; multidisciplinary ; Nanofluids ; Nanotechnology ; Nanotubes ; Nanowires ; Science ; Science (multidisciplinary) ; Spectrum analysis ; Temperature dependence ; Trajectory measurement ; Vacuum</subject><ispartof>Nature communications, 2024-07, Vol.15 (1), p.5605-12, Article 5605</ispartof><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024</rights><rights>2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.</rights><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c405t-5919bf18ecc2b0e593f03e7f415346754984a7a2725c1b71e82d85ca62fdd0a3</cites><orcidid>0000-0002-2007-5005 ; 0000-0002-3728-9544 ; 0000-0002-5096-7522 ; 0000-0002-7836-415X ; 0000-0001-8180-7452 ; 0000-0002-9728-0920 ; 0000-0002-9622-7837 ; 0000-0002-0939-7652 ; 0000-0002-5476-452X ; 0000-0001-5574-2384 ; 0000-0002-0828-6897 ; 0000-0003-2944-808X ; 0000000296227837 ; 0000000237289544 ; 0000000181807452 ; 0000000250967522 ; 000000027836415X ; 0000000220075005 ; 0000000155742384 ; 0000000208286897 ; 0000000209397652 ; 000000032944808X ; 0000000297280920 ; 000000025476452X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3075494980/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3075494980?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38961083$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2391089$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tu, Yu-Ming</creatorcontrib><creatorcontrib>Kuehne, Matthias</creatorcontrib><creatorcontrib>Misra, Rahul Prasanna</creatorcontrib><creatorcontrib>Ritt, Cody L.</creatorcontrib><creatorcontrib>Oliaei, Hananeh</creatorcontrib><creatorcontrib>Faucher, Samuel</creatorcontrib><creatorcontrib>Li, Haokun</creatorcontrib><creatorcontrib>Xu, Xintong</creatorcontrib><creatorcontrib>Penn, Aubrey</creatorcontrib><creatorcontrib>Yang, Sungyun</creatorcontrib><creatorcontrib>Yang, Jing Fan</creatorcontrib><creatorcontrib>Sendgikoski, Kyle</creatorcontrib><creatorcontrib>Chakraverty, Joshika</creatorcontrib><creatorcontrib>Cumings, John</creatorcontrib><creatorcontrib>Majumdar, Arun</creatorcontrib><creatorcontrib>Aluru, Narayana R.</creatorcontrib><creatorcontrib>Hachtel, Jordan A.</creatorcontrib><creatorcontrib>Blankschtein, Daniel</creatorcontrib><creatorcontrib>Strano, Michael S.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Environmental damping and vibrational coupling of confined fluids within isolated carbon nanotubes</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Because of their large surface areas, nanotubes and nanowires demonstrate exquisite mechanical coupling to their surroundings, promising advanced sensors and nanomechanical devices. However, this environmental sensitivity has resulted in several ambiguous observations of vibrational coupling across various experiments. Herein, we demonstrate a temperature-dependent Radial Breathing Mode (RBM) frequency in free-standing, electron-diffraction-assigned Double-Walled Carbon Nanotubes (DWNTs) that shows an unexpected and thermally reversible frequency downshift of 10 to 15%, for systems isolated in vacuum. An analysis based on a harmonic oscillator model assigns the distinctive frequency cusp, produced over 93 scans of 3 distinct DWNTs, along with the hyperbolic trajectory, to a reversible increase in damping from graphitic ribbons on the exterior surface. Strain-dependent coupling from self-tensioned, suspended DWNTs maintains the ratio of spring-to-damping frequencies, producing a stable saturation of RBM in the low-tension limit. In contrast, when the interior of DWNTs is subjected to a water-filling process, the RBM thermal trajectory is altered to that of a Langmuir isobar and elliptical trajectories, allowing measurement of the enthalpy of confined fluid phase change. These mechanisms and quantitative theory provide new insights into the environmental coupling of nanomechanical systems and the implications for devices and nanofluidic conduits.
Nanotubes exhibit high vibrational coupling to the environment but lack a theoretical description. Vacuum-isolated, suspended double walled nanotubes provide a damping model for mass coupling, offering new nanomechanics and nanofluidics insights.</description><subject>140/133</subject><subject>147/143</subject><subject>147/28</subject><subject>639/925/357/73</subject><subject>639/925/927/351</subject><subject>639/925/930/12</subject><subject>Carbon</subject><subject>Coupling</subject><subject>Damping</subject><subject>Electrons</subject><subject>Enthalpy</subject><subject>Experiments</subject><subject>Fluidics</subject><subject>Harmonic oscillators</subject><subject>High temperature</subject><subject>Humanities and Social Sciences</subject><subject>Hyperbolic trajectories</subject><subject>MATERIALS SCIENCE</subject><subject>Mechanical properties</subject><subject>Multi wall carbon nanotubes</subject><subject>multidisciplinary</subject><subject>Nanofluids</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Nanowires</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spectrum analysis</subject><subject>Temperature dependence</subject><subject>Trajectory measurement</subject><subject>Vacuum</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UstuFDEQHCEQiUJ-gAMawYXLgJ9j-4RQFCBSJC65W-3H7Ho1ay-2ZxF_j5MJIeGAL7aqq6vd3dV1rzH6gBGVHwvDbBQDImxgahzxIJ91pwQxPGBB6PNH75PuvJQdaocqLBl72Z1QqUaMJD3tzGU8hpzi3scKc-9gfwhx00N0_TGYDDWk2HCblsN8G0hTe8cpRO_6aV6CK_3PULch9qGkGWqDLWSTYh8hproYX151LyaYiz-_v8-6my-XNxffhuvvX68uPl8PliFeB66wMhOW3lpikOeKToh6MTHMaeuUMyUZCCCCcIuNwF4SJ7mFkUzOIaBn3dUq6xLs9CGHPeRfOkHQd0DKGw25Bjt7TZRQjCsnABxDxhtiuWfeWS48sZQ0rU-r1mEx-4a34WSYn4g-jcSw1Zt01BgTQtjImsLbVSGVGnSxoXq7bZOL3lZN2iKQVI30_r5MTj8WX6reh2L9PEP0aSmaIsEFwoqMjfruH-ouLbmtZmUx1caDGousLJtTKdlPD1_GSN_aRq-20c02-s42WrakN4-bfUj5Y5JGoCuhtFDc-Py39n9kfwOX-85r</recordid><startdate>20240703</startdate><enddate>20240703</enddate><creator>Tu, Yu-Ming</creator><creator>Kuehne, Matthias</creator><creator>Misra, Rahul Prasanna</creator><creator>Ritt, Cody L.</creator><creator>Oliaei, Hananeh</creator><creator>Faucher, Samuel</creator><creator>Li, Haokun</creator><creator>Xu, Xintong</creator><creator>Penn, Aubrey</creator><creator>Yang, Sungyun</creator><creator>Yang, Jing Fan</creator><creator>Sendgikoski, Kyle</creator><creator>Chakraverty, Joshika</creator><creator>Cumings, John</creator><creator>Majumdar, Arun</creator><creator>Aluru, Narayana R.</creator><creator>Hachtel, Jordan A.</creator><creator>Blankschtein, Daniel</creator><creator>Strano, Michael S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2007-5005</orcidid><orcidid>https://orcid.org/0000-0002-3728-9544</orcidid><orcidid>https://orcid.org/0000-0002-5096-7522</orcidid><orcidid>https://orcid.org/0000-0002-7836-415X</orcidid><orcidid>https://orcid.org/0000-0001-8180-7452</orcidid><orcidid>https://orcid.org/0000-0002-9728-0920</orcidid><orcidid>https://orcid.org/0000-0002-9622-7837</orcidid><orcidid>https://orcid.org/0000-0002-0939-7652</orcidid><orcidid>https://orcid.org/0000-0002-5476-452X</orcidid><orcidid>https://orcid.org/0000-0001-5574-2384</orcidid><orcidid>https://orcid.org/0000-0002-0828-6897</orcidid><orcidid>https://orcid.org/0000-0003-2944-808X</orcidid><orcidid>https://orcid.org/0000000296227837</orcidid><orcidid>https://orcid.org/0000000237289544</orcidid><orcidid>https://orcid.org/0000000181807452</orcidid><orcidid>https://orcid.org/0000000250967522</orcidid><orcidid>https://orcid.org/000000027836415X</orcidid><orcidid>https://orcid.org/0000000220075005</orcidid><orcidid>https://orcid.org/0000000155742384</orcidid><orcidid>https://orcid.org/0000000208286897</orcidid><orcidid>https://orcid.org/0000000209397652</orcidid><orcidid>https://orcid.org/000000032944808X</orcidid><orcidid>https://orcid.org/0000000297280920</orcidid><orcidid>https://orcid.org/000000025476452X</orcidid></search><sort><creationdate>20240703</creationdate><title>Environmental damping and vibrational coupling of confined fluids within isolated carbon nanotubes</title><author>Tu, Yu-Ming ; Kuehne, Matthias ; Misra, Rahul Prasanna ; Ritt, Cody L. ; Oliaei, Hananeh ; Faucher, Samuel ; Li, Haokun ; Xu, Xintong ; Penn, Aubrey ; Yang, Sungyun ; Yang, Jing Fan ; Sendgikoski, Kyle ; Chakraverty, Joshika ; Cumings, John ; Majumdar, Arun ; Aluru, Narayana R. ; Hachtel, Jordan A. ; Blankschtein, Daniel ; Strano, Michael S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-5919bf18ecc2b0e593f03e7f415346754984a7a2725c1b71e82d85ca62fdd0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>140/133</topic><topic>147/143</topic><topic>147/28</topic><topic>639/925/357/73</topic><topic>639/925/927/351</topic><topic>639/925/930/12</topic><topic>Carbon</topic><topic>Coupling</topic><topic>Damping</topic><topic>Electrons</topic><topic>Enthalpy</topic><topic>Experiments</topic><topic>Fluidics</topic><topic>Harmonic oscillators</topic><topic>High temperature</topic><topic>Humanities and Social Sciences</topic><topic>Hyperbolic trajectories</topic><topic>MATERIALS SCIENCE</topic><topic>Mechanical properties</topic><topic>Multi wall carbon nanotubes</topic><topic>multidisciplinary</topic><topic>Nanofluids</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Nanowires</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spectrum analysis</topic><topic>Temperature dependence</topic><topic>Trajectory measurement</topic><topic>Vacuum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tu, Yu-Ming</creatorcontrib><creatorcontrib>Kuehne, Matthias</creatorcontrib><creatorcontrib>Misra, Rahul Prasanna</creatorcontrib><creatorcontrib>Ritt, Cody L.</creatorcontrib><creatorcontrib>Oliaei, Hananeh</creatorcontrib><creatorcontrib>Faucher, Samuel</creatorcontrib><creatorcontrib>Li, Haokun</creatorcontrib><creatorcontrib>Xu, Xintong</creatorcontrib><creatorcontrib>Penn, Aubrey</creatorcontrib><creatorcontrib>Yang, Sungyun</creatorcontrib><creatorcontrib>Yang, Jing Fan</creatorcontrib><creatorcontrib>Sendgikoski, Kyle</creatorcontrib><creatorcontrib>Chakraverty, Joshika</creatorcontrib><creatorcontrib>Cumings, John</creatorcontrib><creatorcontrib>Majumdar, Arun</creatorcontrib><creatorcontrib>Aluru, Narayana R.</creatorcontrib><creatorcontrib>Hachtel, Jordan A.</creatorcontrib><creatorcontrib>Blankschtein, Daniel</creatorcontrib><creatorcontrib>Strano, Michael S.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tu, Yu-Ming</au><au>Kuehne, Matthias</au><au>Misra, Rahul Prasanna</au><au>Ritt, Cody L.</au><au>Oliaei, Hananeh</au><au>Faucher, Samuel</au><au>Li, Haokun</au><au>Xu, Xintong</au><au>Penn, Aubrey</au><au>Yang, Sungyun</au><au>Yang, Jing Fan</au><au>Sendgikoski, Kyle</au><au>Chakraverty, Joshika</au><au>Cumings, John</au><au>Majumdar, Arun</au><au>Aluru, Narayana R.</au><au>Hachtel, Jordan A.</au><au>Blankschtein, Daniel</au><au>Strano, Michael S.</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Environmental damping and vibrational coupling of confined fluids within isolated carbon nanotubes</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-07-03</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>5605</spage><epage>12</epage><pages>5605-12</pages><artnum>5605</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Because of their large surface areas, nanotubes and nanowires demonstrate exquisite mechanical coupling to their surroundings, promising advanced sensors and nanomechanical devices. However, this environmental sensitivity has resulted in several ambiguous observations of vibrational coupling across various experiments. Herein, we demonstrate a temperature-dependent Radial Breathing Mode (RBM) frequency in free-standing, electron-diffraction-assigned Double-Walled Carbon Nanotubes (DWNTs) that shows an unexpected and thermally reversible frequency downshift of 10 to 15%, for systems isolated in vacuum. An analysis based on a harmonic oscillator model assigns the distinctive frequency cusp, produced over 93 scans of 3 distinct DWNTs, along with the hyperbolic trajectory, to a reversible increase in damping from graphitic ribbons on the exterior surface. Strain-dependent coupling from self-tensioned, suspended DWNTs maintains the ratio of spring-to-damping frequencies, producing a stable saturation of RBM in the low-tension limit. In contrast, when the interior of DWNTs is subjected to a water-filling process, the RBM thermal trajectory is altered to that of a Langmuir isobar and elliptical trajectories, allowing measurement of the enthalpy of confined fluid phase change. These mechanisms and quantitative theory provide new insights into the environmental coupling of nanomechanical systems and the implications for devices and nanofluidic conduits.
Nanotubes exhibit high vibrational coupling to the environment but lack a theoretical description. Vacuum-isolated, suspended double walled nanotubes provide a damping model for mass coupling, offering new nanomechanics and nanofluidics insights.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38961083</pmid><doi>10.1038/s41467-024-49661-8</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2007-5005</orcidid><orcidid>https://orcid.org/0000-0002-3728-9544</orcidid><orcidid>https://orcid.org/0000-0002-5096-7522</orcidid><orcidid>https://orcid.org/0000-0002-7836-415X</orcidid><orcidid>https://orcid.org/0000-0001-8180-7452</orcidid><orcidid>https://orcid.org/0000-0002-9728-0920</orcidid><orcidid>https://orcid.org/0000-0002-9622-7837</orcidid><orcidid>https://orcid.org/0000-0002-0939-7652</orcidid><orcidid>https://orcid.org/0000-0002-5476-452X</orcidid><orcidid>https://orcid.org/0000-0001-5574-2384</orcidid><orcidid>https://orcid.org/0000-0002-0828-6897</orcidid><orcidid>https://orcid.org/0000-0003-2944-808X</orcidid><orcidid>https://orcid.org/0000000296227837</orcidid><orcidid>https://orcid.org/0000000237289544</orcidid><orcidid>https://orcid.org/0000000181807452</orcidid><orcidid>https://orcid.org/0000000250967522</orcidid><orcidid>https://orcid.org/000000027836415X</orcidid><orcidid>https://orcid.org/0000000220075005</orcidid><orcidid>https://orcid.org/0000000155742384</orcidid><orcidid>https://orcid.org/0000000208286897</orcidid><orcidid>https://orcid.org/0000000209397652</orcidid><orcidid>https://orcid.org/000000032944808X</orcidid><orcidid>https://orcid.org/0000000297280920</orcidid><orcidid>https://orcid.org/000000025476452X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2024-07, Vol.15 (1), p.5605-12, Article 5605 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2979459d7aad40beb2c5e4edc57e2c32 |
source | Nature_系列刊; Publicly Available Content (ProQuest); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 140/133 147/143 147/28 639/925/357/73 639/925/927/351 639/925/930/12 Carbon Coupling Damping Electrons Enthalpy Experiments Fluidics Harmonic oscillators High temperature Humanities and Social Sciences Hyperbolic trajectories MATERIALS SCIENCE Mechanical properties Multi wall carbon nanotubes multidisciplinary Nanofluids Nanotechnology Nanotubes Nanowires Science Science (multidisciplinary) Spectrum analysis Temperature dependence Trajectory measurement Vacuum |
title | Environmental damping and vibrational coupling of confined fluids within isolated carbon nanotubes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A43%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Environmental%20damping%20and%20vibrational%20coupling%20of%20confined%20fluids%20within%20isolated%20carbon%20nanotubes&rft.jtitle=Nature%20communications&rft.au=Tu,%20Yu-Ming&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2024-07-03&rft.volume=15&rft.issue=1&rft.spage=5605&rft.epage=12&rft.pages=5605-12&rft.artnum=5605&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-49661-8&rft_dat=%3Cproquest_doaj_%3E3075701926%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-5919bf18ecc2b0e593f03e7f415346754984a7a2725c1b71e82d85ca62fdd0a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3075494980&rft_id=info:pmid/38961083&rfr_iscdi=true |