Loading…

Concentration Effect on Quenching of Chlorophyll a Fluorescence by All-Trans-β-Carotene in Photosynthesis

Absorption, fluorescence spectra of chlorophyll a (Chl-a) and all-trans-β-carotene (β-Car) mixing solution are investigated in different polarity and polarizability solvents. The carotenoids regulate the energy flow in photosynthesis by interaction with chlorophyll, leading to an observable reductio...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2017-09, Vol.22 (10), p.1585
Main Authors: Chen, Chen, Gong, Nan, Li, Zuowei, Sun, Chenglin, Men, Zhiwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Absorption, fluorescence spectra of chlorophyll a (Chl-a) and all-trans-β-carotene (β-Car) mixing solution are investigated in different polarity and polarizability solvents. The carotenoids regulate the energy flow in photosynthesis by interaction with chlorophyll, leading to an observable reduction of Chl-a fluorescence. The fluorescence red shifts with the increasing solvent polarizability. The energy transfer in the Chl-a and β-Car system is proposed. The electron transfer should be dominant in quenching Chl-a fluorescence rather than the energy transfer in this system. Polar solvent with large polarizability shows high quenching efficiency. When dissolved in carbon tetrachloride, Chl-a presents red shift of absorption and blue shift of fluorescence spectra with increasing β-Car concentration, which implies a Chl-a conformational change.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules22101585