Loading…
Aerosol water parameterisation: a single parameter framework
We introduce a framework to efficiently parameterise the aerosol water uptake for mixtures of semi-volatile and non-volatile compounds, based on the coefficient, νi. This solute-specific coefficient was introduced in Metzger et al. (2012) to accurately parameterise the single solution hygroscopic gr...
Saved in:
Published in: | Atmospheric chemistry and physics 2016-06, Vol.16 (11), p.7213-7237 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c407t-76c2cbb4864751c3810d076b53b96a04157647dc3064ecb0d66816a593298bf53 |
---|---|
cites | cdi_FETCH-LOGICAL-c407t-76c2cbb4864751c3810d076b53b96a04157647dc3064ecb0d66816a593298bf53 |
container_end_page | 7237 |
container_issue | 11 |
container_start_page | 7213 |
container_title | Atmospheric chemistry and physics |
container_volume | 16 |
creator | Metzger, Swen Steil, Benedikt Mohamed, Abdelkader Klingmüller, Klaus Xu, Li Penner, Joyce E Fountoukis, Christos Nenes, Athanasios Lelieveld, Jos |
description | We introduce a framework to efficiently parameterise the aerosol water uptake for mixtures of semi-volatile and non-volatile compounds, based on the coefficient, νi. This solute-specific coefficient was introduced in Metzger et al. (2012) to accurately parameterise the single solution hygroscopic growth, considering the Kelvin effect – accounting for the water uptake of concentrated nanometer-sized particles up to dilute solutions, i.e. from the compounds relative humidity of deliquescence (RHD) up to supersaturation (Köhler theory). Here we extend the νi parameterisation from single to mixed solutions. We evaluate our framework at various levels of complexity, by considering the full gas–liquid–solid partitioning for a comprehensive comparison with reference calculations using the E-AIM, EQUISOLV II and ISORROPIA II models as well as textbook examples. We apply our parameterisation in the EQuilibrium Simplified Aerosol Model V4 (EQSAM4clim) for climate simulations, implemented in a box model and in the global chemistry–climate model EMAC. Our results show (i) that the νi approach enables one to analytically solve the entire gas–liquid–solid partitioning and the mixed solution water uptake with sufficient accuracy, (ii) that ammonium sulfate mixtures can be solved with a simple method, e.g. pure ammonium nitrate and mixed ammonium nitrate and (iii) that the aerosol optical depth (AOD) simulations are in close agreement with remote sensing observations for the year 2005. Long-term evaluation of the EMAC results based on EQSAM4clim and ISORROPIA II will be presented separately. |
doi_str_mv | 10.5194/acp-16-7213-2016 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_298b128f07d74801b7eb18f5fe5d6c8d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_298b128f07d74801b7eb18f5fe5d6c8d</doaj_id><sourcerecordid>4083807161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-76c2cbb4864751c3810d076b53b96a04157647dc3064ecb0d66816a593298bf53</originalsourceid><addsrcrecordid>eNp9UctKA0EQHETBGL17XPC82j3vFTyE4CMQ8KLnYWZ2NmzcZOLshuDf-C1-mbtG1JOnLrqqi6KLkHOES4EFv7J-k6PMFUWWU0B5QEYoNeSKUX74Bx-Tk7ZdAlAByEfkZhJSbGOT7WwXUraxya5Cj-rWdnVcX2f2472t14sm_HJZNYBdTC-n5KiyTRvOvueYPN_dPk0f8vnj_Ww6meeeg-pyJT31znEtuRLomUYoQUknmCukBY5C9UzpGUgevINSSo3SioLRQrtKsDGZ7X3LaJdmk-qVTW8m2tp8LWJaGJu62jfBDBdIdQWqVFwDOhUc6kpUQZTS67L3uth7bVJ83Ya2M8u4Tes-vqEcuZCKSfmfClUhOC-Ypr0K9irfP7FNofrJhmCGWkxfi0FphlrMUAv7BJ-RfrI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1795449382</pqid></control><display><type>article</type><title>Aerosol water parameterisation: a single parameter framework</title><source>DOAJ Directory of Open Access Journals</source><source>Publicly Available Content (ProQuest)</source><source>Alma/SFX Local Collection</source><creator>Metzger, Swen ; Steil, Benedikt ; Mohamed, Abdelkader ; Klingmüller, Klaus ; Xu, Li ; Penner, Joyce E ; Fountoukis, Christos ; Nenes, Athanasios ; Lelieveld, Jos</creator><creatorcontrib>Metzger, Swen ; Steil, Benedikt ; Mohamed, Abdelkader ; Klingmüller, Klaus ; Xu, Li ; Penner, Joyce E ; Fountoukis, Christos ; Nenes, Athanasios ; Lelieveld, Jos</creatorcontrib><description>We introduce a framework to efficiently parameterise the aerosol water uptake for mixtures of semi-volatile and non-volatile compounds, based on the coefficient, νi. This solute-specific coefficient was introduced in Metzger et al. (2012) to accurately parameterise the single solution hygroscopic growth, considering the Kelvin effect – accounting for the water uptake of concentrated nanometer-sized particles up to dilute solutions, i.e. from the compounds relative humidity of deliquescence (RHD) up to supersaturation (Köhler theory). Here we extend the νi parameterisation from single to mixed solutions. We evaluate our framework at various levels of complexity, by considering the full gas–liquid–solid partitioning for a comprehensive comparison with reference calculations using the E-AIM, EQUISOLV II and ISORROPIA II models as well as textbook examples. We apply our parameterisation in the EQuilibrium Simplified Aerosol Model V4 (EQSAM4clim) for climate simulations, implemented in a box model and in the global chemistry–climate model EMAC. Our results show (i) that the νi approach enables one to analytically solve the entire gas–liquid–solid partitioning and the mixed solution water uptake with sufficient accuracy, (ii) that ammonium sulfate mixtures can be solved with a simple method, e.g. pure ammonium nitrate and mixed ammonium nitrate and (iii) that the aerosol optical depth (AOD) simulations are in close agreement with remote sensing observations for the year 2005. Long-term evaluation of the EMAC results based on EQSAM4clim and ISORROPIA II will be presented separately.</description><identifier>ISSN: 1680-7324</identifier><identifier>ISSN: 1680-7316</identifier><identifier>EISSN: 1680-7324</identifier><identifier>DOI: 10.5194/acp-16-7213-2016</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Accuracy ; Aerosol optical depth ; Aerosols ; Ammonium ; Ammonium compounds ; Ammonium nitrate ; Ammonium sulfate ; Atmospheric aerosols ; Chemical compounds ; Chemical partition ; Chemistry ; Climate ; Climate models ; Computer simulation ; Dilution ; Efficiency ; Equilibrium ; Evaluation ; Frameworks ; Handbooks ; Humidity ; Hygroscopicity ; Nanoparticles ; Optical analysis ; Optical thickness ; Parameterization ; Partitioning ; Relative humidity ; Remote sensing ; Solutes ; Solutions ; Sulfates ; Supersaturation ; Temperature ; Thermodynamics ; Uptake ; Volatile compounds ; Water uptake</subject><ispartof>Atmospheric chemistry and physics, 2016-06, Vol.16 (11), p.7213-7237</ispartof><rights>Copyright Copernicus GmbH 2016</rights><rights>2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-76c2cbb4864751c3810d076b53b96a04157647dc3064ecb0d66816a593298bf53</citedby><cites>FETCH-LOGICAL-c407t-76c2cbb4864751c3810d076b53b96a04157647dc3064ecb0d66816a593298bf53</cites><orcidid>0000-0002-3623-7160 ; 0000-0002-8425-8150 ; 0000-0002-7099-9214 ; 0000-0003-3873-9970 ; 0000-0002-3657-823X ; 0000-0001-6307-3846 ; 0000-0001-5577-452X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1795449382/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1795449382?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,25744,27915,27916,37003,44581,74887</link.rule.ids></links><search><creatorcontrib>Metzger, Swen</creatorcontrib><creatorcontrib>Steil, Benedikt</creatorcontrib><creatorcontrib>Mohamed, Abdelkader</creatorcontrib><creatorcontrib>Klingmüller, Klaus</creatorcontrib><creatorcontrib>Xu, Li</creatorcontrib><creatorcontrib>Penner, Joyce E</creatorcontrib><creatorcontrib>Fountoukis, Christos</creatorcontrib><creatorcontrib>Nenes, Athanasios</creatorcontrib><creatorcontrib>Lelieveld, Jos</creatorcontrib><title>Aerosol water parameterisation: a single parameter framework</title><title>Atmospheric chemistry and physics</title><description>We introduce a framework to efficiently parameterise the aerosol water uptake for mixtures of semi-volatile and non-volatile compounds, based on the coefficient, νi. This solute-specific coefficient was introduced in Metzger et al. (2012) to accurately parameterise the single solution hygroscopic growth, considering the Kelvin effect – accounting for the water uptake of concentrated nanometer-sized particles up to dilute solutions, i.e. from the compounds relative humidity of deliquescence (RHD) up to supersaturation (Köhler theory). Here we extend the νi parameterisation from single to mixed solutions. We evaluate our framework at various levels of complexity, by considering the full gas–liquid–solid partitioning for a comprehensive comparison with reference calculations using the E-AIM, EQUISOLV II and ISORROPIA II models as well as textbook examples. We apply our parameterisation in the EQuilibrium Simplified Aerosol Model V4 (EQSAM4clim) for climate simulations, implemented in a box model and in the global chemistry–climate model EMAC. Our results show (i) that the νi approach enables one to analytically solve the entire gas–liquid–solid partitioning and the mixed solution water uptake with sufficient accuracy, (ii) that ammonium sulfate mixtures can be solved with a simple method, e.g. pure ammonium nitrate and mixed ammonium nitrate and (iii) that the aerosol optical depth (AOD) simulations are in close agreement with remote sensing observations for the year 2005. Long-term evaluation of the EMAC results based on EQSAM4clim and ISORROPIA II will be presented separately.</description><subject>Accuracy</subject><subject>Aerosol optical depth</subject><subject>Aerosols</subject><subject>Ammonium</subject><subject>Ammonium compounds</subject><subject>Ammonium nitrate</subject><subject>Ammonium sulfate</subject><subject>Atmospheric aerosols</subject><subject>Chemical compounds</subject><subject>Chemical partition</subject><subject>Chemistry</subject><subject>Climate</subject><subject>Climate models</subject><subject>Computer simulation</subject><subject>Dilution</subject><subject>Efficiency</subject><subject>Equilibrium</subject><subject>Evaluation</subject><subject>Frameworks</subject><subject>Handbooks</subject><subject>Humidity</subject><subject>Hygroscopicity</subject><subject>Nanoparticles</subject><subject>Optical analysis</subject><subject>Optical thickness</subject><subject>Parameterization</subject><subject>Partitioning</subject><subject>Relative humidity</subject><subject>Remote sensing</subject><subject>Solutes</subject><subject>Solutions</subject><subject>Sulfates</subject><subject>Supersaturation</subject><subject>Temperature</subject><subject>Thermodynamics</subject><subject>Uptake</subject><subject>Volatile compounds</subject><subject>Water uptake</subject><issn>1680-7324</issn><issn>1680-7316</issn><issn>1680-7324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UctKA0EQHETBGL17XPC82j3vFTyE4CMQ8KLnYWZ2NmzcZOLshuDf-C1-mbtG1JOnLrqqi6KLkHOES4EFv7J-k6PMFUWWU0B5QEYoNeSKUX74Bx-Tk7ZdAlAByEfkZhJSbGOT7WwXUraxya5Cj-rWdnVcX2f2472t14sm_HJZNYBdTC-n5KiyTRvOvueYPN_dPk0f8vnj_Ww6meeeg-pyJT31znEtuRLomUYoQUknmCukBY5C9UzpGUgevINSSo3SioLRQrtKsDGZ7X3LaJdmk-qVTW8m2tp8LWJaGJu62jfBDBdIdQWqVFwDOhUc6kpUQZTS67L3uth7bVJ83Ya2M8u4Tes-vqEcuZCKSfmfClUhOC-Ypr0K9irfP7FNofrJhmCGWkxfi0FphlrMUAv7BJ-RfrI</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Metzger, Swen</creator><creator>Steil, Benedikt</creator><creator>Mohamed, Abdelkader</creator><creator>Klingmüller, Klaus</creator><creator>Xu, Li</creator><creator>Penner, Joyce E</creator><creator>Fountoukis, Christos</creator><creator>Nenes, Athanasios</creator><creator>Lelieveld, Jos</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3623-7160</orcidid><orcidid>https://orcid.org/0000-0002-8425-8150</orcidid><orcidid>https://orcid.org/0000-0002-7099-9214</orcidid><orcidid>https://orcid.org/0000-0003-3873-9970</orcidid><orcidid>https://orcid.org/0000-0002-3657-823X</orcidid><orcidid>https://orcid.org/0000-0001-6307-3846</orcidid><orcidid>https://orcid.org/0000-0001-5577-452X</orcidid></search><sort><creationdate>20160601</creationdate><title>Aerosol water parameterisation: a single parameter framework</title><author>Metzger, Swen ; Steil, Benedikt ; Mohamed, Abdelkader ; Klingmüller, Klaus ; Xu, Li ; Penner, Joyce E ; Fountoukis, Christos ; Nenes, Athanasios ; Lelieveld, Jos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-76c2cbb4864751c3810d076b53b96a04157647dc3064ecb0d66816a593298bf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Aerosol optical depth</topic><topic>Aerosols</topic><topic>Ammonium</topic><topic>Ammonium compounds</topic><topic>Ammonium nitrate</topic><topic>Ammonium sulfate</topic><topic>Atmospheric aerosols</topic><topic>Chemical compounds</topic><topic>Chemical partition</topic><topic>Chemistry</topic><topic>Climate</topic><topic>Climate models</topic><topic>Computer simulation</topic><topic>Dilution</topic><topic>Efficiency</topic><topic>Equilibrium</topic><topic>Evaluation</topic><topic>Frameworks</topic><topic>Handbooks</topic><topic>Humidity</topic><topic>Hygroscopicity</topic><topic>Nanoparticles</topic><topic>Optical analysis</topic><topic>Optical thickness</topic><topic>Parameterization</topic><topic>Partitioning</topic><topic>Relative humidity</topic><topic>Remote sensing</topic><topic>Solutes</topic><topic>Solutions</topic><topic>Sulfates</topic><topic>Supersaturation</topic><topic>Temperature</topic><topic>Thermodynamics</topic><topic>Uptake</topic><topic>Volatile compounds</topic><topic>Water uptake</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Metzger, Swen</creatorcontrib><creatorcontrib>Steil, Benedikt</creatorcontrib><creatorcontrib>Mohamed, Abdelkader</creatorcontrib><creatorcontrib>Klingmüller, Klaus</creatorcontrib><creatorcontrib>Xu, Li</creatorcontrib><creatorcontrib>Penner, Joyce E</creatorcontrib><creatorcontrib>Fountoukis, Christos</creatorcontrib><creatorcontrib>Nenes, Athanasios</creatorcontrib><creatorcontrib>Lelieveld, Jos</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Agriculture & Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmospheric chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Metzger, Swen</au><au>Steil, Benedikt</au><au>Mohamed, Abdelkader</au><au>Klingmüller, Klaus</au><au>Xu, Li</au><au>Penner, Joyce E</au><au>Fountoukis, Christos</au><au>Nenes, Athanasios</au><au>Lelieveld, Jos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aerosol water parameterisation: a single parameter framework</atitle><jtitle>Atmospheric chemistry and physics</jtitle><date>2016-06-01</date><risdate>2016</risdate><volume>16</volume><issue>11</issue><spage>7213</spage><epage>7237</epage><pages>7213-7237</pages><issn>1680-7324</issn><issn>1680-7316</issn><eissn>1680-7324</eissn><abstract>We introduce a framework to efficiently parameterise the aerosol water uptake for mixtures of semi-volatile and non-volatile compounds, based on the coefficient, νi. This solute-specific coefficient was introduced in Metzger et al. (2012) to accurately parameterise the single solution hygroscopic growth, considering the Kelvin effect – accounting for the water uptake of concentrated nanometer-sized particles up to dilute solutions, i.e. from the compounds relative humidity of deliquescence (RHD) up to supersaturation (Köhler theory). Here we extend the νi parameterisation from single to mixed solutions. We evaluate our framework at various levels of complexity, by considering the full gas–liquid–solid partitioning for a comprehensive comparison with reference calculations using the E-AIM, EQUISOLV II and ISORROPIA II models as well as textbook examples. We apply our parameterisation in the EQuilibrium Simplified Aerosol Model V4 (EQSAM4clim) for climate simulations, implemented in a box model and in the global chemistry–climate model EMAC. Our results show (i) that the νi approach enables one to analytically solve the entire gas–liquid–solid partitioning and the mixed solution water uptake with sufficient accuracy, (ii) that ammonium sulfate mixtures can be solved with a simple method, e.g. pure ammonium nitrate and mixed ammonium nitrate and (iii) that the aerosol optical depth (AOD) simulations are in close agreement with remote sensing observations for the year 2005. Long-term evaluation of the EMAC results based on EQSAM4clim and ISORROPIA II will be presented separately.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/acp-16-7213-2016</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-3623-7160</orcidid><orcidid>https://orcid.org/0000-0002-8425-8150</orcidid><orcidid>https://orcid.org/0000-0002-7099-9214</orcidid><orcidid>https://orcid.org/0000-0003-3873-9970</orcidid><orcidid>https://orcid.org/0000-0002-3657-823X</orcidid><orcidid>https://orcid.org/0000-0001-6307-3846</orcidid><orcidid>https://orcid.org/0000-0001-5577-452X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1680-7324 |
ispartof | Atmospheric chemistry and physics, 2016-06, Vol.16 (11), p.7213-7237 |
issn | 1680-7324 1680-7316 1680-7324 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_298b128f07d74801b7eb18f5fe5d6c8d |
source | DOAJ Directory of Open Access Journals; Publicly Available Content (ProQuest); Alma/SFX Local Collection |
subjects | Accuracy Aerosol optical depth Aerosols Ammonium Ammonium compounds Ammonium nitrate Ammonium sulfate Atmospheric aerosols Chemical compounds Chemical partition Chemistry Climate Climate models Computer simulation Dilution Efficiency Equilibrium Evaluation Frameworks Handbooks Humidity Hygroscopicity Nanoparticles Optical analysis Optical thickness Parameterization Partitioning Relative humidity Remote sensing Solutes Solutions Sulfates Supersaturation Temperature Thermodynamics Uptake Volatile compounds Water uptake |
title | Aerosol water parameterisation: a single parameter framework |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A27%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aerosol%20water%20parameterisation:%20a%C2%A0single%20parameter%20framework&rft.jtitle=Atmospheric%20chemistry%20and%20physics&rft.au=Metzger,%20Swen&rft.date=2016-06-01&rft.volume=16&rft.issue=11&rft.spage=7213&rft.epage=7237&rft.pages=7213-7237&rft.issn=1680-7324&rft.eissn=1680-7324&rft_id=info:doi/10.5194/acp-16-7213-2016&rft_dat=%3Cproquest_doaj_%3E4083807161%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-76c2cbb4864751c3810d076b53b96a04157647dc3064ecb0d66816a593298bf53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1795449382&rft_id=info:pmid/&rfr_iscdi=true |