Loading…

Aerosol water parameterisation: a single parameter framework

We introduce a framework to efficiently parameterise the aerosol water uptake for mixtures of semi-volatile and non-volatile compounds, based on the coefficient, νi. This solute-specific coefficient was introduced in Metzger et al. (2012) to accurately parameterise the single solution hygroscopic gr...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric chemistry and physics 2016-06, Vol.16 (11), p.7213-7237
Main Authors: Metzger, Swen, Steil, Benedikt, Mohamed, Abdelkader, Klingmüller, Klaus, Xu, Li, Penner, Joyce E, Fountoukis, Christos, Nenes, Athanasios, Lelieveld, Jos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c407t-76c2cbb4864751c3810d076b53b96a04157647dc3064ecb0d66816a593298bf53
cites cdi_FETCH-LOGICAL-c407t-76c2cbb4864751c3810d076b53b96a04157647dc3064ecb0d66816a593298bf53
container_end_page 7237
container_issue 11
container_start_page 7213
container_title Atmospheric chemistry and physics
container_volume 16
creator Metzger, Swen
Steil, Benedikt
Mohamed, Abdelkader
Klingmüller, Klaus
Xu, Li
Penner, Joyce E
Fountoukis, Christos
Nenes, Athanasios
Lelieveld, Jos
description We introduce a framework to efficiently parameterise the aerosol water uptake for mixtures of semi-volatile and non-volatile compounds, based on the coefficient, νi. This solute-specific coefficient was introduced in Metzger et al. (2012) to accurately parameterise the single solution hygroscopic growth, considering the Kelvin effect – accounting for the water uptake of concentrated nanometer-sized particles up to dilute solutions, i.e. from the compounds relative humidity of deliquescence (RHD) up to supersaturation (Köhler theory). Here we extend the νi parameterisation from single to mixed solutions. We evaluate our framework at various levels of complexity, by considering the full gas–liquid–solid partitioning for a comprehensive comparison with reference calculations using the E-AIM, EQUISOLV II and ISORROPIA II models as well as textbook examples. We apply our parameterisation in the EQuilibrium Simplified Aerosol Model V4 (EQSAM4clim) for climate simulations, implemented in a box model and in the global chemistry–climate model EMAC. Our results show (i) that the νi approach enables one to analytically solve the entire gas–liquid–solid partitioning and the mixed solution water uptake with sufficient accuracy, (ii) that ammonium sulfate mixtures can be solved with a simple method, e.g. pure ammonium nitrate and mixed ammonium nitrate and (iii) that the aerosol optical depth (AOD) simulations are in close agreement with remote sensing observations for the year 2005. Long-term evaluation of the EMAC results based on EQSAM4clim and ISORROPIA II will be presented separately.
doi_str_mv 10.5194/acp-16-7213-2016
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_298b128f07d74801b7eb18f5fe5d6c8d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_298b128f07d74801b7eb18f5fe5d6c8d</doaj_id><sourcerecordid>4083807161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-76c2cbb4864751c3810d076b53b96a04157647dc3064ecb0d66816a593298bf53</originalsourceid><addsrcrecordid>eNp9UctKA0EQHETBGL17XPC82j3vFTyE4CMQ8KLnYWZ2NmzcZOLshuDf-C1-mbtG1JOnLrqqi6KLkHOES4EFv7J-k6PMFUWWU0B5QEYoNeSKUX74Bx-Tk7ZdAlAByEfkZhJSbGOT7WwXUraxya5Cj-rWdnVcX2f2472t14sm_HJZNYBdTC-n5KiyTRvOvueYPN_dPk0f8vnj_Ww6meeeg-pyJT31znEtuRLomUYoQUknmCukBY5C9UzpGUgevINSSo3SioLRQrtKsDGZ7X3LaJdmk-qVTW8m2tp8LWJaGJu62jfBDBdIdQWqVFwDOhUc6kpUQZTS67L3uth7bVJ83Ya2M8u4Tes-vqEcuZCKSfmfClUhOC-Ypr0K9irfP7FNofrJhmCGWkxfi0FphlrMUAv7BJ-RfrI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1795449382</pqid></control><display><type>article</type><title>Aerosol water parameterisation: a single parameter framework</title><source>DOAJ Directory of Open Access Journals</source><source>Publicly Available Content (ProQuest)</source><source>Alma/SFX Local Collection</source><creator>Metzger, Swen ; Steil, Benedikt ; Mohamed, Abdelkader ; Klingmüller, Klaus ; Xu, Li ; Penner, Joyce E ; Fountoukis, Christos ; Nenes, Athanasios ; Lelieveld, Jos</creator><creatorcontrib>Metzger, Swen ; Steil, Benedikt ; Mohamed, Abdelkader ; Klingmüller, Klaus ; Xu, Li ; Penner, Joyce E ; Fountoukis, Christos ; Nenes, Athanasios ; Lelieveld, Jos</creatorcontrib><description>We introduce a framework to efficiently parameterise the aerosol water uptake for mixtures of semi-volatile and non-volatile compounds, based on the coefficient, νi. This solute-specific coefficient was introduced in Metzger et al. (2012) to accurately parameterise the single solution hygroscopic growth, considering the Kelvin effect – accounting for the water uptake of concentrated nanometer-sized particles up to dilute solutions, i.e. from the compounds relative humidity of deliquescence (RHD) up to supersaturation (Köhler theory). Here we extend the νi parameterisation from single to mixed solutions. We evaluate our framework at various levels of complexity, by considering the full gas–liquid–solid partitioning for a comprehensive comparison with reference calculations using the E-AIM, EQUISOLV II and ISORROPIA II models as well as textbook examples. We apply our parameterisation in the EQuilibrium Simplified Aerosol Model V4 (EQSAM4clim) for climate simulations, implemented in a box model and in the global chemistry–climate model EMAC. Our results show (i) that the νi approach enables one to analytically solve the entire gas–liquid–solid partitioning and the mixed solution water uptake with sufficient accuracy, (ii) that ammonium sulfate mixtures can be solved with a simple method, e.g. pure ammonium nitrate and mixed ammonium nitrate and (iii) that the aerosol optical depth (AOD) simulations are in close agreement with remote sensing observations for the year 2005. Long-term evaluation of the EMAC results based on EQSAM4clim and ISORROPIA II will be presented separately.</description><identifier>ISSN: 1680-7324</identifier><identifier>ISSN: 1680-7316</identifier><identifier>EISSN: 1680-7324</identifier><identifier>DOI: 10.5194/acp-16-7213-2016</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Accuracy ; Aerosol optical depth ; Aerosols ; Ammonium ; Ammonium compounds ; Ammonium nitrate ; Ammonium sulfate ; Atmospheric aerosols ; Chemical compounds ; Chemical partition ; Chemistry ; Climate ; Climate models ; Computer simulation ; Dilution ; Efficiency ; Equilibrium ; Evaluation ; Frameworks ; Handbooks ; Humidity ; Hygroscopicity ; Nanoparticles ; Optical analysis ; Optical thickness ; Parameterization ; Partitioning ; Relative humidity ; Remote sensing ; Solutes ; Solutions ; Sulfates ; Supersaturation ; Temperature ; Thermodynamics ; Uptake ; Volatile compounds ; Water uptake</subject><ispartof>Atmospheric chemistry and physics, 2016-06, Vol.16 (11), p.7213-7237</ispartof><rights>Copyright Copernicus GmbH 2016</rights><rights>2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-76c2cbb4864751c3810d076b53b96a04157647dc3064ecb0d66816a593298bf53</citedby><cites>FETCH-LOGICAL-c407t-76c2cbb4864751c3810d076b53b96a04157647dc3064ecb0d66816a593298bf53</cites><orcidid>0000-0002-3623-7160 ; 0000-0002-8425-8150 ; 0000-0002-7099-9214 ; 0000-0003-3873-9970 ; 0000-0002-3657-823X ; 0000-0001-6307-3846 ; 0000-0001-5577-452X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1795449382/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1795449382?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,25744,27915,27916,37003,44581,74887</link.rule.ids></links><search><creatorcontrib>Metzger, Swen</creatorcontrib><creatorcontrib>Steil, Benedikt</creatorcontrib><creatorcontrib>Mohamed, Abdelkader</creatorcontrib><creatorcontrib>Klingmüller, Klaus</creatorcontrib><creatorcontrib>Xu, Li</creatorcontrib><creatorcontrib>Penner, Joyce E</creatorcontrib><creatorcontrib>Fountoukis, Christos</creatorcontrib><creatorcontrib>Nenes, Athanasios</creatorcontrib><creatorcontrib>Lelieveld, Jos</creatorcontrib><title>Aerosol water parameterisation: a single parameter framework</title><title>Atmospheric chemistry and physics</title><description>We introduce a framework to efficiently parameterise the aerosol water uptake for mixtures of semi-volatile and non-volatile compounds, based on the coefficient, νi. This solute-specific coefficient was introduced in Metzger et al. (2012) to accurately parameterise the single solution hygroscopic growth, considering the Kelvin effect – accounting for the water uptake of concentrated nanometer-sized particles up to dilute solutions, i.e. from the compounds relative humidity of deliquescence (RHD) up to supersaturation (Köhler theory). Here we extend the νi parameterisation from single to mixed solutions. We evaluate our framework at various levels of complexity, by considering the full gas–liquid–solid partitioning for a comprehensive comparison with reference calculations using the E-AIM, EQUISOLV II and ISORROPIA II models as well as textbook examples. We apply our parameterisation in the EQuilibrium Simplified Aerosol Model V4 (EQSAM4clim) for climate simulations, implemented in a box model and in the global chemistry–climate model EMAC. Our results show (i) that the νi approach enables one to analytically solve the entire gas–liquid–solid partitioning and the mixed solution water uptake with sufficient accuracy, (ii) that ammonium sulfate mixtures can be solved with a simple method, e.g. pure ammonium nitrate and mixed ammonium nitrate and (iii) that the aerosol optical depth (AOD) simulations are in close agreement with remote sensing observations for the year 2005. Long-term evaluation of the EMAC results based on EQSAM4clim and ISORROPIA II will be presented separately.</description><subject>Accuracy</subject><subject>Aerosol optical depth</subject><subject>Aerosols</subject><subject>Ammonium</subject><subject>Ammonium compounds</subject><subject>Ammonium nitrate</subject><subject>Ammonium sulfate</subject><subject>Atmospheric aerosols</subject><subject>Chemical compounds</subject><subject>Chemical partition</subject><subject>Chemistry</subject><subject>Climate</subject><subject>Climate models</subject><subject>Computer simulation</subject><subject>Dilution</subject><subject>Efficiency</subject><subject>Equilibrium</subject><subject>Evaluation</subject><subject>Frameworks</subject><subject>Handbooks</subject><subject>Humidity</subject><subject>Hygroscopicity</subject><subject>Nanoparticles</subject><subject>Optical analysis</subject><subject>Optical thickness</subject><subject>Parameterization</subject><subject>Partitioning</subject><subject>Relative humidity</subject><subject>Remote sensing</subject><subject>Solutes</subject><subject>Solutions</subject><subject>Sulfates</subject><subject>Supersaturation</subject><subject>Temperature</subject><subject>Thermodynamics</subject><subject>Uptake</subject><subject>Volatile compounds</subject><subject>Water uptake</subject><issn>1680-7324</issn><issn>1680-7316</issn><issn>1680-7324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UctKA0EQHETBGL17XPC82j3vFTyE4CMQ8KLnYWZ2NmzcZOLshuDf-C1-mbtG1JOnLrqqi6KLkHOES4EFv7J-k6PMFUWWU0B5QEYoNeSKUX74Bx-Tk7ZdAlAByEfkZhJSbGOT7WwXUraxya5Cj-rWdnVcX2f2472t14sm_HJZNYBdTC-n5KiyTRvOvueYPN_dPk0f8vnj_Ww6meeeg-pyJT31znEtuRLomUYoQUknmCukBY5C9UzpGUgevINSSo3SioLRQrtKsDGZ7X3LaJdmk-qVTW8m2tp8LWJaGJu62jfBDBdIdQWqVFwDOhUc6kpUQZTS67L3uth7bVJ83Ya2M8u4Tes-vqEcuZCKSfmfClUhOC-Ypr0K9irfP7FNofrJhmCGWkxfi0FphlrMUAv7BJ-RfrI</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Metzger, Swen</creator><creator>Steil, Benedikt</creator><creator>Mohamed, Abdelkader</creator><creator>Klingmüller, Klaus</creator><creator>Xu, Li</creator><creator>Penner, Joyce E</creator><creator>Fountoukis, Christos</creator><creator>Nenes, Athanasios</creator><creator>Lelieveld, Jos</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3623-7160</orcidid><orcidid>https://orcid.org/0000-0002-8425-8150</orcidid><orcidid>https://orcid.org/0000-0002-7099-9214</orcidid><orcidid>https://orcid.org/0000-0003-3873-9970</orcidid><orcidid>https://orcid.org/0000-0002-3657-823X</orcidid><orcidid>https://orcid.org/0000-0001-6307-3846</orcidid><orcidid>https://orcid.org/0000-0001-5577-452X</orcidid></search><sort><creationdate>20160601</creationdate><title>Aerosol water parameterisation: a single parameter framework</title><author>Metzger, Swen ; Steil, Benedikt ; Mohamed, Abdelkader ; Klingmüller, Klaus ; Xu, Li ; Penner, Joyce E ; Fountoukis, Christos ; Nenes, Athanasios ; Lelieveld, Jos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-76c2cbb4864751c3810d076b53b96a04157647dc3064ecb0d66816a593298bf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Aerosol optical depth</topic><topic>Aerosols</topic><topic>Ammonium</topic><topic>Ammonium compounds</topic><topic>Ammonium nitrate</topic><topic>Ammonium sulfate</topic><topic>Atmospheric aerosols</topic><topic>Chemical compounds</topic><topic>Chemical partition</topic><topic>Chemistry</topic><topic>Climate</topic><topic>Climate models</topic><topic>Computer simulation</topic><topic>Dilution</topic><topic>Efficiency</topic><topic>Equilibrium</topic><topic>Evaluation</topic><topic>Frameworks</topic><topic>Handbooks</topic><topic>Humidity</topic><topic>Hygroscopicity</topic><topic>Nanoparticles</topic><topic>Optical analysis</topic><topic>Optical thickness</topic><topic>Parameterization</topic><topic>Partitioning</topic><topic>Relative humidity</topic><topic>Remote sensing</topic><topic>Solutes</topic><topic>Solutions</topic><topic>Sulfates</topic><topic>Supersaturation</topic><topic>Temperature</topic><topic>Thermodynamics</topic><topic>Uptake</topic><topic>Volatile compounds</topic><topic>Water uptake</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Metzger, Swen</creatorcontrib><creatorcontrib>Steil, Benedikt</creatorcontrib><creatorcontrib>Mohamed, Abdelkader</creatorcontrib><creatorcontrib>Klingmüller, Klaus</creatorcontrib><creatorcontrib>Xu, Li</creatorcontrib><creatorcontrib>Penner, Joyce E</creatorcontrib><creatorcontrib>Fountoukis, Christos</creatorcontrib><creatorcontrib>Nenes, Athanasios</creatorcontrib><creatorcontrib>Lelieveld, Jos</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Agriculture &amp; Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmospheric chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Metzger, Swen</au><au>Steil, Benedikt</au><au>Mohamed, Abdelkader</au><au>Klingmüller, Klaus</au><au>Xu, Li</au><au>Penner, Joyce E</au><au>Fountoukis, Christos</au><au>Nenes, Athanasios</au><au>Lelieveld, Jos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aerosol water parameterisation: a single parameter framework</atitle><jtitle>Atmospheric chemistry and physics</jtitle><date>2016-06-01</date><risdate>2016</risdate><volume>16</volume><issue>11</issue><spage>7213</spage><epage>7237</epage><pages>7213-7237</pages><issn>1680-7324</issn><issn>1680-7316</issn><eissn>1680-7324</eissn><abstract>We introduce a framework to efficiently parameterise the aerosol water uptake for mixtures of semi-volatile and non-volatile compounds, based on the coefficient, νi. This solute-specific coefficient was introduced in Metzger et al. (2012) to accurately parameterise the single solution hygroscopic growth, considering the Kelvin effect – accounting for the water uptake of concentrated nanometer-sized particles up to dilute solutions, i.e. from the compounds relative humidity of deliquescence (RHD) up to supersaturation (Köhler theory). Here we extend the νi parameterisation from single to mixed solutions. We evaluate our framework at various levels of complexity, by considering the full gas–liquid–solid partitioning for a comprehensive comparison with reference calculations using the E-AIM, EQUISOLV II and ISORROPIA II models as well as textbook examples. We apply our parameterisation in the EQuilibrium Simplified Aerosol Model V4 (EQSAM4clim) for climate simulations, implemented in a box model and in the global chemistry–climate model EMAC. Our results show (i) that the νi approach enables one to analytically solve the entire gas–liquid–solid partitioning and the mixed solution water uptake with sufficient accuracy, (ii) that ammonium sulfate mixtures can be solved with a simple method, e.g. pure ammonium nitrate and mixed ammonium nitrate and (iii) that the aerosol optical depth (AOD) simulations are in close agreement with remote sensing observations for the year 2005. Long-term evaluation of the EMAC results based on EQSAM4clim and ISORROPIA II will be presented separately.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/acp-16-7213-2016</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-3623-7160</orcidid><orcidid>https://orcid.org/0000-0002-8425-8150</orcidid><orcidid>https://orcid.org/0000-0002-7099-9214</orcidid><orcidid>https://orcid.org/0000-0003-3873-9970</orcidid><orcidid>https://orcid.org/0000-0002-3657-823X</orcidid><orcidid>https://orcid.org/0000-0001-6307-3846</orcidid><orcidid>https://orcid.org/0000-0001-5577-452X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1680-7324
ispartof Atmospheric chemistry and physics, 2016-06, Vol.16 (11), p.7213-7237
issn 1680-7324
1680-7316
1680-7324
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_298b128f07d74801b7eb18f5fe5d6c8d
source DOAJ Directory of Open Access Journals; Publicly Available Content (ProQuest); Alma/SFX Local Collection
subjects Accuracy
Aerosol optical depth
Aerosols
Ammonium
Ammonium compounds
Ammonium nitrate
Ammonium sulfate
Atmospheric aerosols
Chemical compounds
Chemical partition
Chemistry
Climate
Climate models
Computer simulation
Dilution
Efficiency
Equilibrium
Evaluation
Frameworks
Handbooks
Humidity
Hygroscopicity
Nanoparticles
Optical analysis
Optical thickness
Parameterization
Partitioning
Relative humidity
Remote sensing
Solutes
Solutions
Sulfates
Supersaturation
Temperature
Thermodynamics
Uptake
Volatile compounds
Water uptake
title Aerosol water parameterisation: a single parameter framework
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A27%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aerosol%20water%20parameterisation:%20a%C2%A0single%20parameter%20framework&rft.jtitle=Atmospheric%20chemistry%20and%20physics&rft.au=Metzger,%20Swen&rft.date=2016-06-01&rft.volume=16&rft.issue=11&rft.spage=7213&rft.epage=7237&rft.pages=7213-7237&rft.issn=1680-7324&rft.eissn=1680-7324&rft_id=info:doi/10.5194/acp-16-7213-2016&rft_dat=%3Cproquest_doaj_%3E4083807161%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-76c2cbb4864751c3810d076b53b96a04157647dc3064ecb0d66816a593298bf53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1795449382&rft_id=info:pmid/&rfr_iscdi=true