Loading…

Deep Neural Network Utilizing Remote Sensing Datasets for Flood Hazard Susceptibility Mapping in Brisbane, Australia

Large damages and losses resulting from floods are widely reported across the globe. Thus, the identification of the flood-prone zones on a flood susceptibility map is very essential. To do so, 13 conditioning factors influencing the flood occurrence in Brisbane river catchment in Australia (i.e., t...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2021-07, Vol.13 (13), p.2638
Main Authors: Kalantar, Bahareh, Ueda, Naonori, Saeidi, Vahideh, Janizadeh, Saeid, Shabani, Fariborz, Ahmadi, Kourosh, Shabani, Farzin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Large damages and losses resulting from floods are widely reported across the globe. Thus, the identification of the flood-prone zones on a flood susceptibility map is very essential. To do so, 13 conditioning factors influencing the flood occurrence in Brisbane river catchment in Australia (i.e., topographic, water-related, geological, and land use factors) were acquired for further processing and modeling. In this study, artificial neural networks (ANN), deep learning neural networks (DLNN), and optimized DLNN using particle swarm optimization (PSO) were exploited to predict and estimate the susceptible areas to the future floods. The significance of the conditioning factors analysis for the region highlighted that altitude, distance from river, sediment transport index (STI), and slope played the most important roles, whereas stream power index (SPI) did not contribute to the hazardous situation. The performance of the models was evaluated against the statistical tests such as sensitivity, specificity, the area under curve (AUC), and true skill statistic (TSS). DLNN and PSO-DLNN models obtained the highest values of sensitivity (0.99) for the training stage to compare with ANN. Moreover, the validations of specificity and TSS for PSO-DLNN recorded the highest values of 0.98 and 0.90, respectively, compared with those obtained by ANN and DLNN. The best accuracies by AUC were evaluated in PSO-DLNN (0.99 in training and 0.98 in testing datasets), followed by DLNN and ANN. Therefore, the optimized PSO-DLNN proved its robustness to compare with other methods.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs13132638