Loading…
Activation of NRF2/HO-1 Pathway by aqueous methanolic leaf extract of Triclisia gilletii and selected identified compounds in Triclisia gilletii, modulates crystal binding genes (CD44/OPN) in Ethane-1,2-diol-induced nephrolithic rats
Moonseed vine (Triclisia gilletii Staner) a member of the Menispermaceae family, has been previously investigated and reported in our laboratory to exhibit antilithiatic potentials against ethane-1,2-diol induced nephrolithiasis. However, the mechanism underlying its action is not clear. Mechanism o...
Saved in:
Published in: | Phytomedicine Plus : International journal of phytotherapy and phytopharmacology 2021-11, Vol.1 (4), p.100066, Article 100066 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Moonseed vine (Triclisia gilletii Staner) a member of the Menispermaceae family, has been previously investigated and reported in our laboratory to exhibit antilithiatic potentials against ethane-1,2-diol induced nephrolithiasis. However, the mechanism underlying its action is not clear.
Mechanism of action of aqueous methanolic leaf extact of Triclisia gilletii (TGAMLE 100 mg/kg) in comparison with compounds identified in TGAMLE (Quercetin (20 mg/kg), oleanolic acid (10 mg/kg), stigmasterol (20 mg/kg), and sitosterol (20 mg/kg)) was investigated against ethane-1,2-diol administered rats.
The mRNA expression of antioxidant marker genes (nuclear factor erythroid- 2 – related factor- 2 (NRF2) and Heme oxygenase-1 (HO-1)) and crystal binding genes (CD44 and osteopontin (OPN)) were assessed using RT-PCR.
Ethane-1,2-diol administration down-regulated antioxidant marker genes (NRF2 and HO-1) and up-regulated mRNA expression of CD44 with no significant difference in OPN when compared with control. TGAMLE and its derived compounds significantly activated the NRF2/HO-1 pathway by up-regulating its expression and modify crystal binding molecules (CD44/OPN). Overall, the additive effects of the compounds present in the extract revealed a better efficacy in attenuating NRF2/HO-1 pathway as well as the expression of crystal binding molecules.
The present study concludes the nephro-protective effect and underlying mechanism of TGAMLE against ethane-1,2-diol exposed rats and suggests that TGAMLE or compounds in TGAMLE could be an alternative agent against kidney stones.
[Display omitted] |
---|---|
ISSN: | 2667-0313 2667-0313 |
DOI: | 10.1016/j.phyplu.2021.100066 |