Loading…
Bridging population pharmacokinetic and semimechanistic absorption modeling of APX3330
APX3330 ((2E)‐2‐[(4,5‐dimethoxy‐2‐methyl‐3,6‐dioxo‐1,4‐cyclohexadien‐1‐yl)methylene]‐undecanoic acid), a selective inhibitor of APE1/Ref‐1, has been investigated in treatment of hepatitis, cancer, diabetic retinopathy, and macular edema. APX3330 is administered orally as a quinone but is rapidly con...
Saved in:
Published in: | CPT: pharmacometrics and systems pharmacology 2024-01, Vol.13 (1), p.106-117 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c5411-35543aa96e4ecf7cef8e02ac564c76ca459eb7f44af2a383b87155f93b76c10a3 |
container_end_page | 117 |
container_issue | 1 |
container_start_page | 106 |
container_title | CPT: pharmacometrics and systems pharmacology |
container_volume | 13 |
creator | Silva, Larissa L. Stratford, Robert E. Messmann, Richard Kelley, Mark R. Quinney, Sara K. |
description | APX3330 ((2E)‐2‐[(4,5‐dimethoxy‐2‐methyl‐3,6‐dioxo‐1,4‐cyclohexadien‐1‐yl)methylene]‐undecanoic acid), a selective inhibitor of APE1/Ref‐1, has been investigated in treatment of hepatitis, cancer, diabetic retinopathy, and macular edema. APX3330 is administered orally as a quinone but is rapidly converted to the hydroquinone form. This study describes the pharmacokinetics of APX3330 and explores effect of food on absorption. Total plasma quinone concentrations of APX3330 were obtained following oral administration from studies in healthy Japanese male subjects (single dose‐escalation; multiple‐dose; food‐effect) and patients with cancer patients. Nonlinear mixed effects modeling was performed using Monolix to estimate pharmacokinetic parameters and assess covariate effects. To further evaluate the effect of food on absorption, a semi‐physiologic pharmacokinetic model was developed in Gastroplus to delineate effects of food on dissolution and absorption. A two‐compartment, first order absorption model with lag time best described plasma concentration‐time profiles from 49 healthy Japanese males. Weight was positively correlated with apparent clearance (CL/F) and volume. Administration with food led to an 80% higher lag time. CL/F was 41% higher in the cancer population. The semi‐physiologic model indicates a switch from dissolution‐rate control of absorption in the fasted‐state to gastric emptying rate determining absorption rate in the fed‐state. Oral clearance of APX3330 is higher in patients with cancer than healthy Japanese males, possibly due to reduced serum albumin in patients with cancer. Delayed APX3330 absorption with food may be related to higher conversion to the more soluble but less permeable hydroquinone form in the gastrointestinal tract. Future work should address pharmacokinetic differences between APX3330 quinone and hydroquinone forms. |
doi_str_mv | 10.1002/psp4.13061 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2a035ebb2ba343f598127d29d5bf80c3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2a035ebb2ba343f598127d29d5bf80c3</doaj_id><sourcerecordid>2883583583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5411-35543aa96e4ecf7cef8e02ac564c76ca459eb7f44af2a383b87155f93b76c10a3</originalsourceid><addsrcrecordid>eNp9kV1rFDEUhgdRbKm98QfIgDcibE1ykknmSmrxo1BwwQ-8C2cyyW7Wmck02VH6783O1NJ6YQgkOefh4ZC3KJ5TckYJYW_GNPIzCqSij4pjRitYqfx4fO9-VJymtCN5SU5oTZ4WRyCV4kTQ4-L7u-jbjR825RjGqcO9D0M5bjH2aMJPP9i9NyUObZls73trtjj4NNeaFOI4431obXdQBFeer38AAHlWPHHYJXt6e54U3z68_3rxaXX1-ePlxfnVyghO6QqE4IBYV5Zb46SxTlnC0IiKG1kZ5KK2jXSco2MICholqRCuhiZ3KUE4KS4Xbxtwp8foe4w3OqDXcyHEjcaYx-2sZkhA2KZhDQIHJ2pFmWxZ3YrGKWIgu94urnFqetsaO-wjdg-kDzuD3-pN-KUpkUoywrPh1a0hhuvJpr3ufTK263CwYUqaKQVi3hl9-Q-6C1Mc8l9pVlOoQAogmXq9UCaGlKJ1d9NQog_x60P8eo4_wy_uz3-H_g07A3QBfvvO3vxHpddf1nyR_gGqWbnz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913637530</pqid></control><display><type>article</type><title>Bridging population pharmacokinetic and semimechanistic absorption modeling of APX3330</title><source>Publicly Available Content Database</source><source>Wiley Open Access Journals</source><source>PubMed Central</source><creator>Silva, Larissa L. ; Stratford, Robert E. ; Messmann, Richard ; Kelley, Mark R. ; Quinney, Sara K.</creator><creatorcontrib>Silva, Larissa L. ; Stratford, Robert E. ; Messmann, Richard ; Kelley, Mark R. ; Quinney, Sara K.</creatorcontrib><description>APX3330 ((2E)‐2‐[(4,5‐dimethoxy‐2‐methyl‐3,6‐dioxo‐1,4‐cyclohexadien‐1‐yl)methylene]‐undecanoic acid), a selective inhibitor of APE1/Ref‐1, has been investigated in treatment of hepatitis, cancer, diabetic retinopathy, and macular edema. APX3330 is administered orally as a quinone but is rapidly converted to the hydroquinone form. This study describes the pharmacokinetics of APX3330 and explores effect of food on absorption. Total plasma quinone concentrations of APX3330 were obtained following oral administration from studies in healthy Japanese male subjects (single dose‐escalation; multiple‐dose; food‐effect) and patients with cancer patients. Nonlinear mixed effects modeling was performed using Monolix to estimate pharmacokinetic parameters and assess covariate effects. To further evaluate the effect of food on absorption, a semi‐physiologic pharmacokinetic model was developed in Gastroplus to delineate effects of food on dissolution and absorption. A two‐compartment, first order absorption model with lag time best described plasma concentration‐time profiles from 49 healthy Japanese males. Weight was positively correlated with apparent clearance (CL/F) and volume. Administration with food led to an 80% higher lag time. CL/F was 41% higher in the cancer population. The semi‐physiologic model indicates a switch from dissolution‐rate control of absorption in the fasted‐state to gastric emptying rate determining absorption rate in the fed‐state. Oral clearance of APX3330 is higher in patients with cancer than healthy Japanese males, possibly due to reduced serum albumin in patients with cancer. Delayed APX3330 absorption with food may be related to higher conversion to the more soluble but less permeable hydroquinone form in the gastrointestinal tract. Future work should address pharmacokinetic differences between APX3330 quinone and hydroquinone forms.</description><identifier>ISSN: 2163-8306</identifier><identifier>EISSN: 2163-8306</identifier><identifier>DOI: 10.1002/psp4.13061</identifier><identifier>PMID: 37884051</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Inc</publisher><subject>Administration, Oral ; Angiogenesis Inhibitors ; Cancer ; Diabetes ; Drug dosages ; Food ; Humans ; Hydroquinones ; Male ; Metabolism ; Neoplasms ; Oxidation ; Particle size ; Permeability ; Pharmacokinetics ; Physiology ; Plasma ; Quinones ; Small intestine ; Volunteers</subject><ispartof>CPT: pharmacometrics and systems pharmacology, 2024-01, Vol.13 (1), p.106-117</ispartof><rights>2023 The Authors. published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.</rights><rights>2023 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c5411-35543aa96e4ecf7cef8e02ac564c76ca459eb7f44af2a383b87155f93b76c10a3</cites><orcidid>0000-0001-9472-1826 ; 0000-0002-2112-0277 ; 0000-0002-6554-0695 ; 0000-0002-6165-6893 ; 0000-0002-9735-0220</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2913637530/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2913637530?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,11543,25734,27905,27906,36993,36994,44571,46033,46457,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37884051$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Silva, Larissa L.</creatorcontrib><creatorcontrib>Stratford, Robert E.</creatorcontrib><creatorcontrib>Messmann, Richard</creatorcontrib><creatorcontrib>Kelley, Mark R.</creatorcontrib><creatorcontrib>Quinney, Sara K.</creatorcontrib><title>Bridging population pharmacokinetic and semimechanistic absorption modeling of APX3330</title><title>CPT: pharmacometrics and systems pharmacology</title><addtitle>CPT Pharmacometrics Syst Pharmacol</addtitle><description>APX3330 ((2E)‐2‐[(4,5‐dimethoxy‐2‐methyl‐3,6‐dioxo‐1,4‐cyclohexadien‐1‐yl)methylene]‐undecanoic acid), a selective inhibitor of APE1/Ref‐1, has been investigated in treatment of hepatitis, cancer, diabetic retinopathy, and macular edema. APX3330 is administered orally as a quinone but is rapidly converted to the hydroquinone form. This study describes the pharmacokinetics of APX3330 and explores effect of food on absorption. Total plasma quinone concentrations of APX3330 were obtained following oral administration from studies in healthy Japanese male subjects (single dose‐escalation; multiple‐dose; food‐effect) and patients with cancer patients. Nonlinear mixed effects modeling was performed using Monolix to estimate pharmacokinetic parameters and assess covariate effects. To further evaluate the effect of food on absorption, a semi‐physiologic pharmacokinetic model was developed in Gastroplus to delineate effects of food on dissolution and absorption. A two‐compartment, first order absorption model with lag time best described plasma concentration‐time profiles from 49 healthy Japanese males. Weight was positively correlated with apparent clearance (CL/F) and volume. Administration with food led to an 80% higher lag time. CL/F was 41% higher in the cancer population. The semi‐physiologic model indicates a switch from dissolution‐rate control of absorption in the fasted‐state to gastric emptying rate determining absorption rate in the fed‐state. Oral clearance of APX3330 is higher in patients with cancer than healthy Japanese males, possibly due to reduced serum albumin in patients with cancer. Delayed APX3330 absorption with food may be related to higher conversion to the more soluble but less permeable hydroquinone form in the gastrointestinal tract. Future work should address pharmacokinetic differences between APX3330 quinone and hydroquinone forms.</description><subject>Administration, Oral</subject><subject>Angiogenesis Inhibitors</subject><subject>Cancer</subject><subject>Diabetes</subject><subject>Drug dosages</subject><subject>Food</subject><subject>Humans</subject><subject>Hydroquinones</subject><subject>Male</subject><subject>Metabolism</subject><subject>Neoplasms</subject><subject>Oxidation</subject><subject>Particle size</subject><subject>Permeability</subject><subject>Pharmacokinetics</subject><subject>Physiology</subject><subject>Plasma</subject><subject>Quinones</subject><subject>Small intestine</subject><subject>Volunteers</subject><issn>2163-8306</issn><issn>2163-8306</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kV1rFDEUhgdRbKm98QfIgDcibE1ykknmSmrxo1BwwQ-8C2cyyW7Wmck02VH6783O1NJ6YQgkOefh4ZC3KJ5TckYJYW_GNPIzCqSij4pjRitYqfx4fO9-VJymtCN5SU5oTZ4WRyCV4kTQ4-L7u-jbjR825RjGqcO9D0M5bjH2aMJPP9i9NyUObZls73trtjj4NNeaFOI4431obXdQBFeer38AAHlWPHHYJXt6e54U3z68_3rxaXX1-ePlxfnVyghO6QqE4IBYV5Zb46SxTlnC0IiKG1kZ5KK2jXSco2MICholqRCuhiZ3KUE4KS4Xbxtwp8foe4w3OqDXcyHEjcaYx-2sZkhA2KZhDQIHJ2pFmWxZ3YrGKWIgu94urnFqetsaO-wjdg-kDzuD3-pN-KUpkUoywrPh1a0hhuvJpr3ufTK263CwYUqaKQVi3hl9-Q-6C1Mc8l9pVlOoQAogmXq9UCaGlKJ1d9NQog_x60P8eo4_wy_uz3-H_g07A3QBfvvO3vxHpddf1nyR_gGqWbnz</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Silva, Larissa L.</creator><creator>Stratford, Robert E.</creator><creator>Messmann, Richard</creator><creator>Kelley, Mark R.</creator><creator>Quinney, Sara K.</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9472-1826</orcidid><orcidid>https://orcid.org/0000-0002-2112-0277</orcidid><orcidid>https://orcid.org/0000-0002-6554-0695</orcidid><orcidid>https://orcid.org/0000-0002-6165-6893</orcidid><orcidid>https://orcid.org/0000-0002-9735-0220</orcidid></search><sort><creationdate>202401</creationdate><title>Bridging population pharmacokinetic and semimechanistic absorption modeling of APX3330</title><author>Silva, Larissa L. ; Stratford, Robert E. ; Messmann, Richard ; Kelley, Mark R. ; Quinney, Sara K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5411-35543aa96e4ecf7cef8e02ac564c76ca459eb7f44af2a383b87155f93b76c10a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Administration, Oral</topic><topic>Angiogenesis Inhibitors</topic><topic>Cancer</topic><topic>Diabetes</topic><topic>Drug dosages</topic><topic>Food</topic><topic>Humans</topic><topic>Hydroquinones</topic><topic>Male</topic><topic>Metabolism</topic><topic>Neoplasms</topic><topic>Oxidation</topic><topic>Particle size</topic><topic>Permeability</topic><topic>Pharmacokinetics</topic><topic>Physiology</topic><topic>Plasma</topic><topic>Quinones</topic><topic>Small intestine</topic><topic>Volunteers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Larissa L.</creatorcontrib><creatorcontrib>Stratford, Robert E.</creatorcontrib><creatorcontrib>Messmann, Richard</creatorcontrib><creatorcontrib>Kelley, Mark R.</creatorcontrib><creatorcontrib>Quinney, Sara K.</creatorcontrib><collection>Wiley Open Access Journals</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>CPT: pharmacometrics and systems pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Larissa L.</au><au>Stratford, Robert E.</au><au>Messmann, Richard</au><au>Kelley, Mark R.</au><au>Quinney, Sara K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bridging population pharmacokinetic and semimechanistic absorption modeling of APX3330</atitle><jtitle>CPT: pharmacometrics and systems pharmacology</jtitle><addtitle>CPT Pharmacometrics Syst Pharmacol</addtitle><date>2024-01</date><risdate>2024</risdate><volume>13</volume><issue>1</issue><spage>106</spage><epage>117</epage><pages>106-117</pages><issn>2163-8306</issn><eissn>2163-8306</eissn><abstract>APX3330 ((2E)‐2‐[(4,5‐dimethoxy‐2‐methyl‐3,6‐dioxo‐1,4‐cyclohexadien‐1‐yl)methylene]‐undecanoic acid), a selective inhibitor of APE1/Ref‐1, has been investigated in treatment of hepatitis, cancer, diabetic retinopathy, and macular edema. APX3330 is administered orally as a quinone but is rapidly converted to the hydroquinone form. This study describes the pharmacokinetics of APX3330 and explores effect of food on absorption. Total plasma quinone concentrations of APX3330 were obtained following oral administration from studies in healthy Japanese male subjects (single dose‐escalation; multiple‐dose; food‐effect) and patients with cancer patients. Nonlinear mixed effects modeling was performed using Monolix to estimate pharmacokinetic parameters and assess covariate effects. To further evaluate the effect of food on absorption, a semi‐physiologic pharmacokinetic model was developed in Gastroplus to delineate effects of food on dissolution and absorption. A two‐compartment, first order absorption model with lag time best described plasma concentration‐time profiles from 49 healthy Japanese males. Weight was positively correlated with apparent clearance (CL/F) and volume. Administration with food led to an 80% higher lag time. CL/F was 41% higher in the cancer population. The semi‐physiologic model indicates a switch from dissolution‐rate control of absorption in the fasted‐state to gastric emptying rate determining absorption rate in the fed‐state. Oral clearance of APX3330 is higher in patients with cancer than healthy Japanese males, possibly due to reduced serum albumin in patients with cancer. Delayed APX3330 absorption with food may be related to higher conversion to the more soluble but less permeable hydroquinone form in the gastrointestinal tract. Future work should address pharmacokinetic differences between APX3330 quinone and hydroquinone forms.</abstract><cop>United States</cop><pub>John Wiley & Sons, Inc</pub><pmid>37884051</pmid><doi>10.1002/psp4.13061</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9472-1826</orcidid><orcidid>https://orcid.org/0000-0002-2112-0277</orcidid><orcidid>https://orcid.org/0000-0002-6554-0695</orcidid><orcidid>https://orcid.org/0000-0002-6165-6893</orcidid><orcidid>https://orcid.org/0000-0002-9735-0220</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2163-8306 |
ispartof | CPT: pharmacometrics and systems pharmacology, 2024-01, Vol.13 (1), p.106-117 |
issn | 2163-8306 2163-8306 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2a035ebb2ba343f598127d29d5bf80c3 |
source | Publicly Available Content Database; Wiley Open Access Journals; PubMed Central |
subjects | Administration, Oral Angiogenesis Inhibitors Cancer Diabetes Drug dosages Food Humans Hydroquinones Male Metabolism Neoplasms Oxidation Particle size Permeability Pharmacokinetics Physiology Plasma Quinones Small intestine Volunteers |
title | Bridging population pharmacokinetic and semimechanistic absorption modeling of APX3330 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bridging%20population%20pharmacokinetic%20and%20semimechanistic%20absorption%20modeling%20of%20APX3330&rft.jtitle=CPT:%20pharmacometrics%20and%20systems%20pharmacology&rft.au=Silva,%20Larissa%20L.&rft.date=2024-01&rft.volume=13&rft.issue=1&rft.spage=106&rft.epage=117&rft.pages=106-117&rft.issn=2163-8306&rft.eissn=2163-8306&rft_id=info:doi/10.1002/psp4.13061&rft_dat=%3Cproquest_doaj_%3E2883583583%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5411-35543aa96e4ecf7cef8e02ac564c76ca459eb7f44af2a383b87155f93b76c10a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2913637530&rft_id=info:pmid/37884051&rfr_iscdi=true |