Loading…

Explicit Exact Solutions of the (2+1)-Dimensional Integro-Differential Jaulent–Miodek Evolution Equation Using the Reliable Methods

In this article, we utilize the G′/G2-expansion method and the Jacobi elliptic equation method to analytically solve the (2 + 1)-dimensional integro-differential Jaulent–Miodek equation for exact solutions. The equation is shortly called the Jaulent–Miodek equation, which was first derived by Jaulen...

Full description

Saved in:
Bibliographic Details
Published in:International journal of mathematics and mathematical sciences 2020, Vol.2020 (2020), p.1-19
Main Authors: Kaewta, Supaporn, Khansai, Nattawut, Sirisubtawee, Sekson
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c493t-7a6bc49cfaeab259d5af0880784234c12733aa01e99757e90d0388ee08d5a8313
cites cdi_FETCH-LOGICAL-c493t-7a6bc49cfaeab259d5af0880784234c12733aa01e99757e90d0388ee08d5a8313
container_end_page 19
container_issue 2020
container_start_page 1
container_title International journal of mathematics and mathematical sciences
container_volume 2020
creator Kaewta, Supaporn
Khansai, Nattawut
Sirisubtawee, Sekson
description In this article, we utilize the G′/G2-expansion method and the Jacobi elliptic equation method to analytically solve the (2 + 1)-dimensional integro-differential Jaulent–Miodek equation for exact solutions. The equation is shortly called the Jaulent–Miodek equation, which was first derived by Jaulent and Miodek and associated with energy-dependent Schrödinger potentials (Jaulent and Miodek, 1976; Jaulent, 1976). The equation is converted into a fourth order partial differential equation using a transformation. After applying a traveling wave transformation to the resulting partial differential equation, we obtain an ordinary differential equation which is the main equation to which the both schemes are applied. As a first step, the two methods give us distinguish systems of algebraic equations. The first method provides exact traveling wave solutions including the logarithmic function solutions of trigonometric functions, hyperbolic functions, and polynomial functions. The second approach provides the Jacobi elliptic function solutions depending upon their modulus values. Some of the obtained solutions are graphically characterized by the distinct physical structures such as singular periodic traveling wave solutions and peakons. A comparison between our results and the ones obtained from the previous literature is given. Obtaining the exact solutions of the equation shows the simplicity, efficiency, and reliability of the used methods, which can be applied to other nonlinear partial differential equations taking place in mathematical physics.
doi_str_mv 10.1155/2020/2916395
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2a050607a6c54a2f9a9c097914d51ff3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A628407118</galeid><doaj_id>oai_doaj_org_article_2a050607a6c54a2f9a9c097914d51ff3</doaj_id><sourcerecordid>A628407118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-7a6bc49cfaeab259d5af0880784234c12733aa01e99757e90d0388ee08d5a8313</originalsourceid><addsrcrecordid>eNqFks1uEzEUhUcIJEJhxxqNxIaqTOuf8dheViVAUCskoGvrxnOduEzGqe1A2bHhCXhDngQ3iaiQkJAXPjr67rmydarqKSXHlApxwggjJ0zTjmtxr5rQTsmGtEzcryaEdrShkrKH1aOUrgihijExqX5Mb9aDtz7X0xuwuf4Yhk32YUx1cHVeYv2CHdHD5pVf4ZiKD0M9GzMuYiiecxhxzL6Y72AzFPnr-88LH3r8XE-_7JPq6fUGtuIy-XGxDf2Ag4f5gPUF5mXo0-PqgYMh4ZP9fVBdvp5-OnvbnL9_Mzs7PW9sq3luJHTzoqwDhDkTuhfgiFJEqpbx1lImOQcgFLWWQqImPeFKIRJVSMUpP6hmu9w-wJVZR7-C-M0E8GZrhLgwELO3AxoGRJCOlJVWtMCcBm2Jlpq2vaDO8ZL1fJe1juF6gymbq7CJ5YOSYS0hTLZat3fUAkqoH13IEezKJ2tOO6ZaIilVhTr-B1VOjytvw4jOF_-vgZe7ARtDShHdn8dQYm67YG67YPZdKPjRDl_6sYev_n_0sx2NhUEHdzSVrOOM_wacn7vL</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400274994</pqid></control><display><type>article</type><title>Explicit Exact Solutions of the (2+1)-Dimensional Integro-Differential Jaulent–Miodek Evolution Equation Using the Reliable Methods</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Kaewta, Supaporn ; Khansai, Nattawut ; Sirisubtawee, Sekson</creator><contributor>Engler, Hans ; Hans Engler</contributor><creatorcontrib>Kaewta, Supaporn ; Khansai, Nattawut ; Sirisubtawee, Sekson ; Engler, Hans ; Hans Engler</creatorcontrib><description>In this article, we utilize the G′/G2-expansion method and the Jacobi elliptic equation method to analytically solve the (2 + 1)-dimensional integro-differential Jaulent–Miodek equation for exact solutions. The equation is shortly called the Jaulent–Miodek equation, which was first derived by Jaulent and Miodek and associated with energy-dependent Schrödinger potentials (Jaulent and Miodek, 1976; Jaulent, 1976). The equation is converted into a fourth order partial differential equation using a transformation. After applying a traveling wave transformation to the resulting partial differential equation, we obtain an ordinary differential equation which is the main equation to which the both schemes are applied. As a first step, the two methods give us distinguish systems of algebraic equations. The first method provides exact traveling wave solutions including the logarithmic function solutions of trigonometric functions, hyperbolic functions, and polynomial functions. The second approach provides the Jacobi elliptic function solutions depending upon their modulus values. Some of the obtained solutions are graphically characterized by the distinct physical structures such as singular periodic traveling wave solutions and peakons. A comparison between our results and the ones obtained from the previous literature is given. Obtaining the exact solutions of the equation shows the simplicity, efficiency, and reliability of the used methods, which can be applied to other nonlinear partial differential equations taking place in mathematical physics.</description><identifier>ISSN: 0161-1712</identifier><identifier>EISSN: 1687-0425</identifier><identifier>DOI: 10.1155/2020/2916395</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algebra ; Differential equations ; Elliptic functions ; Exact solutions ; Hyperbolic functions ; Mathematical analysis ; Methods ; Nonlinear differential equations ; Nonlinear equations ; Partial differential equations ; Physics ; Polynomials ; Software packages ; Solitary waves ; Transformations (mathematics) ; Traveling waves ; Trigonometric functions</subject><ispartof>International journal of mathematics and mathematical sciences, 2020, Vol.2020 (2020), p.1-19</ispartof><rights>Copyright © 2020 Supaporn Kaewta et al.</rights><rights>COPYRIGHT 2020 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2020 Supaporn Kaewta et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-7a6bc49cfaeab259d5af0880784234c12733aa01e99757e90d0388ee08d5a8313</citedby><cites>FETCH-LOGICAL-c493t-7a6bc49cfaeab259d5af0880784234c12733aa01e99757e90d0388ee08d5a8313</cites><orcidid>0000-0003-0715-470X ; 0000-0001-7053-0072 ; 0000-0002-9344-2849</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2400274994/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2400274994?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4009,25732,27902,27903,27904,36991,44569,74872</link.rule.ids></links><search><contributor>Engler, Hans</contributor><contributor>Hans Engler</contributor><creatorcontrib>Kaewta, Supaporn</creatorcontrib><creatorcontrib>Khansai, Nattawut</creatorcontrib><creatorcontrib>Sirisubtawee, Sekson</creatorcontrib><title>Explicit Exact Solutions of the (2+1)-Dimensional Integro-Differential Jaulent–Miodek Evolution Equation Using the Reliable Methods</title><title>International journal of mathematics and mathematical sciences</title><description>In this article, we utilize the G′/G2-expansion method and the Jacobi elliptic equation method to analytically solve the (2 + 1)-dimensional integro-differential Jaulent–Miodek equation for exact solutions. The equation is shortly called the Jaulent–Miodek equation, which was first derived by Jaulent and Miodek and associated with energy-dependent Schrödinger potentials (Jaulent and Miodek, 1976; Jaulent, 1976). The equation is converted into a fourth order partial differential equation using a transformation. After applying a traveling wave transformation to the resulting partial differential equation, we obtain an ordinary differential equation which is the main equation to which the both schemes are applied. As a first step, the two methods give us distinguish systems of algebraic equations. The first method provides exact traveling wave solutions including the logarithmic function solutions of trigonometric functions, hyperbolic functions, and polynomial functions. The second approach provides the Jacobi elliptic function solutions depending upon their modulus values. Some of the obtained solutions are graphically characterized by the distinct physical structures such as singular periodic traveling wave solutions and peakons. A comparison between our results and the ones obtained from the previous literature is given. Obtaining the exact solutions of the equation shows the simplicity, efficiency, and reliability of the used methods, which can be applied to other nonlinear partial differential equations taking place in mathematical physics.</description><subject>Algebra</subject><subject>Differential equations</subject><subject>Elliptic functions</subject><subject>Exact solutions</subject><subject>Hyperbolic functions</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear equations</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Polynomials</subject><subject>Software packages</subject><subject>Solitary waves</subject><subject>Transformations (mathematics)</subject><subject>Traveling waves</subject><subject>Trigonometric functions</subject><issn>0161-1712</issn><issn>1687-0425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFks1uEzEUhUcIJEJhxxqNxIaqTOuf8dheViVAUCskoGvrxnOduEzGqe1A2bHhCXhDngQ3iaiQkJAXPjr67rmydarqKSXHlApxwggjJ0zTjmtxr5rQTsmGtEzcryaEdrShkrKH1aOUrgihijExqX5Mb9aDtz7X0xuwuf4Yhk32YUx1cHVeYv2CHdHD5pVf4ZiKD0M9GzMuYiiecxhxzL6Y72AzFPnr-88LH3r8XE-_7JPq6fUGtuIy-XGxDf2Ag4f5gPUF5mXo0-PqgYMh4ZP9fVBdvp5-OnvbnL9_Mzs7PW9sq3luJHTzoqwDhDkTuhfgiFJEqpbx1lImOQcgFLWWQqImPeFKIRJVSMUpP6hmu9w-wJVZR7-C-M0E8GZrhLgwELO3AxoGRJCOlJVWtMCcBm2Jlpq2vaDO8ZL1fJe1juF6gymbq7CJ5YOSYS0hTLZat3fUAkqoH13IEezKJ2tOO6ZaIilVhTr-B1VOjytvw4jOF_-vgZe7ARtDShHdn8dQYm67YG67YPZdKPjRDl_6sYev_n_0sx2NhUEHdzSVrOOM_wacn7vL</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Kaewta, Supaporn</creator><creator>Khansai, Nattawut</creator><creator>Sirisubtawee, Sekson</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0715-470X</orcidid><orcidid>https://orcid.org/0000-0001-7053-0072</orcidid><orcidid>https://orcid.org/0000-0002-9344-2849</orcidid></search><sort><creationdate>2020</creationdate><title>Explicit Exact Solutions of the (2+1)-Dimensional Integro-Differential Jaulent–Miodek Evolution Equation Using the Reliable Methods</title><author>Kaewta, Supaporn ; Khansai, Nattawut ; Sirisubtawee, Sekson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-7a6bc49cfaeab259d5af0880784234c12733aa01e99757e90d0388ee08d5a8313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Differential equations</topic><topic>Elliptic functions</topic><topic>Exact solutions</topic><topic>Hyperbolic functions</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear equations</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Polynomials</topic><topic>Software packages</topic><topic>Solitary waves</topic><topic>Transformations (mathematics)</topic><topic>Traveling waves</topic><topic>Trigonometric functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaewta, Supaporn</creatorcontrib><creatorcontrib>Khansai, Nattawut</creatorcontrib><creatorcontrib>Sirisubtawee, Sekson</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of mathematics and mathematical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaewta, Supaporn</au><au>Khansai, Nattawut</au><au>Sirisubtawee, Sekson</au><au>Engler, Hans</au><au>Hans Engler</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explicit Exact Solutions of the (2+1)-Dimensional Integro-Differential Jaulent–Miodek Evolution Equation Using the Reliable Methods</atitle><jtitle>International journal of mathematics and mathematical sciences</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>0161-1712</issn><eissn>1687-0425</eissn><abstract>In this article, we utilize the G′/G2-expansion method and the Jacobi elliptic equation method to analytically solve the (2 + 1)-dimensional integro-differential Jaulent–Miodek equation for exact solutions. The equation is shortly called the Jaulent–Miodek equation, which was first derived by Jaulent and Miodek and associated with energy-dependent Schrödinger potentials (Jaulent and Miodek, 1976; Jaulent, 1976). The equation is converted into a fourth order partial differential equation using a transformation. After applying a traveling wave transformation to the resulting partial differential equation, we obtain an ordinary differential equation which is the main equation to which the both schemes are applied. As a first step, the two methods give us distinguish systems of algebraic equations. The first method provides exact traveling wave solutions including the logarithmic function solutions of trigonometric functions, hyperbolic functions, and polynomial functions. The second approach provides the Jacobi elliptic function solutions depending upon their modulus values. Some of the obtained solutions are graphically characterized by the distinct physical structures such as singular periodic traveling wave solutions and peakons. A comparison between our results and the ones obtained from the previous literature is given. Obtaining the exact solutions of the equation shows the simplicity, efficiency, and reliability of the used methods, which can be applied to other nonlinear partial differential equations taking place in mathematical physics.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/2916395</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-0715-470X</orcidid><orcidid>https://orcid.org/0000-0001-7053-0072</orcidid><orcidid>https://orcid.org/0000-0002-9344-2849</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0161-1712
ispartof International journal of mathematics and mathematical sciences, 2020, Vol.2020 (2020), p.1-19
issn 0161-1712
1687-0425
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2a050607a6c54a2f9a9c097914d51ff3
source Wiley Online Library Open Access; Publicly Available Content Database
subjects Algebra
Differential equations
Elliptic functions
Exact solutions
Hyperbolic functions
Mathematical analysis
Methods
Nonlinear differential equations
Nonlinear equations
Partial differential equations
Physics
Polynomials
Software packages
Solitary waves
Transformations (mathematics)
Traveling waves
Trigonometric functions
title Explicit Exact Solutions of the (2+1)-Dimensional Integro-Differential Jaulent–Miodek Evolution Equation Using the Reliable Methods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A30%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explicit%20Exact%20Solutions%20of%20the%20(2+1)-Dimensional%20Integro-Differential%20Jaulent%E2%80%93Miodek%20Evolution%20Equation%20Using%20the%20Reliable%20Methods&rft.jtitle=International%20journal%20of%20mathematics%20and%20mathematical%20sciences&rft.au=Kaewta,%20Supaporn&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=0161-1712&rft.eissn=1687-0425&rft_id=info:doi/10.1155/2020/2916395&rft_dat=%3Cgale_doaj_%3EA628407118%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c493t-7a6bc49cfaeab259d5af0880784234c12733aa01e99757e90d0388ee08d5a8313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2400274994&rft_id=info:pmid/&rft_galeid=A628407118&rfr_iscdi=true