Loading…

A Machine Learning Tool to Monitor and Forecast Results from Testing Products in End-of-Line Systems

The massive industrialization of products in a factory environment requires testing the product at a stage before its exportation to the sales market. For example, the end-of-line tests at Continental Advanced Antenna contribute to the validation of an antenna’s functionality, a product manufactured...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2023-02, Vol.13 (4), p.2263
Main Authors: Nunes, Carlos, Nunes, Ricardo, Pires, E. J. Solteiro, Barroso, João, Reis, Arsénio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-f761760ec41bfde0a2279288481e33eab708a56cd6e6ebb557f231903733283c3
cites cdi_FETCH-LOGICAL-c403t-f761760ec41bfde0a2279288481e33eab708a56cd6e6ebb557f231903733283c3
container_end_page
container_issue 4
container_start_page 2263
container_title Applied sciences
container_volume 13
creator Nunes, Carlos
Nunes, Ricardo
Pires, E. J. Solteiro
Barroso, João
Reis, Arsénio
description The massive industrialization of products in a factory environment requires testing the product at a stage before its exportation to the sales market. For example, the end-of-line tests at Continental Advanced Antenna contribute to the validation of an antenna’s functionality, a product manufactured by this organization. In addition, the storage of information from the testing process allows the data manipulation through automated machine learning algorithms in search of a beneficial contribution. Studies in this area (automatic learning/machine learning) lead to the search and development of tools designed with objectives such as preventing anomalies in the production line, predictive maintenance, product quality assurance, forecast demand, forecasting safety problems, increasing resources, proactive maintenance, resource scalability, reduced production time, and anomaly detection, isolation, and correction. Once applied to the manufacturing environment, these advantages make the EOL system more productive, reliable, and less time-consuming. This way, a tool is proposed that allows the visualization and previous detection of trends associated with faults in the antenna testing system. Furthermore, it focuses on predicting failures at Continental’s EOL.
doi_str_mv 10.3390/app13042263
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2a09f569b144429892ce437ea03128d0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A751987911</galeid><doaj_id>oai_doaj_org_article_2a09f569b144429892ce437ea03128d0</doaj_id><sourcerecordid>A751987911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-f761760ec41bfde0a2279288481e33eab708a56cd6e6ebb557f231903733283c3</originalsourceid><addsrcrecordid>eNpNkUFrVDEQxx-iYKk9-QUCHuXVJJP3khyX0mphi6LrOeQlkzXLbrIm2UO_vVlXpDOHGf7M_8cMMwzvGb0F0PSTPR4ZUMH5DK-GK07lPIJg8vWL_u1wU-uO9tAMFKNXg1-RJ-t-xYRkjbakmLZkk_OetEyecootF2KTJw-5oLO1ke9YT_tWSSj5QDZY29nxrWR_cl2NidwnP-Ywrs_IH8-14aG-G94Eu694869eDz8f7jd3X8b118-Pd6v16ASFNgY5MzlTdIItwSO1nEvNlRKKIQDaRVJlp9n5GWdclmmSgQPTFCQAV-Dgeni8cH22O3Ms8WDLs8k2mr9CLltjS4tuj4ZbqsM064UJIbhWmjsUINFSYFx52lkfLqxjyb9P_U6zy6eS-vqGS6knPimm-9TtZWprOzSmkFuxrqfHQ3Q5YYhdX8mJaSU1Y93w8WJwJddaMPxfk1FzfqN58Ub4AwHwjLw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779525819</pqid></control><display><type>article</type><title>A Machine Learning Tool to Monitor and Forecast Results from Testing Products in End-of-Line Systems</title><source>Publicly Available Content Database</source><creator>Nunes, Carlos ; Nunes, Ricardo ; Pires, E. J. Solteiro ; Barroso, João ; Reis, Arsénio</creator><creatorcontrib>Nunes, Carlos ; Nunes, Ricardo ; Pires, E. J. Solteiro ; Barroso, João ; Reis, Arsénio</creatorcontrib><description>The massive industrialization of products in a factory environment requires testing the product at a stage before its exportation to the sales market. For example, the end-of-line tests at Continental Advanced Antenna contribute to the validation of an antenna’s functionality, a product manufactured by this organization. In addition, the storage of information from the testing process allows the data manipulation through automated machine learning algorithms in search of a beneficial contribution. Studies in this area (automatic learning/machine learning) lead to the search and development of tools designed with objectives such as preventing anomalies in the production line, predictive maintenance, product quality assurance, forecast demand, forecasting safety problems, increasing resources, proactive maintenance, resource scalability, reduced production time, and anomaly detection, isolation, and correction. Once applied to the manufacturing environment, these advantages make the EOL system more productive, reliable, and less time-consuming. This way, a tool is proposed that allows the visualization and previous detection of trends associated with faults in the antenna testing system. Furthermore, it focuses on predicting failures at Continental’s EOL.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app13042263</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Anomalies ; Antennas ; Artificial intelligence ; Automation ; data analysis ; Data mining ; Design ; end-of-line testing ; Fault detection ; Forecasts and trends ; Industrial development ; industry ; Information storage ; Learning algorithms ; Machine learning ; Manufacturing ; Predictive maintenance ; Product quality ; Product testing ; Production lines ; Quality assurance ; Quality control ; Research methodology ; Science ; Trends</subject><ispartof>Applied sciences, 2023-02, Vol.13 (4), p.2263</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-f761760ec41bfde0a2279288481e33eab708a56cd6e6ebb557f231903733283c3</citedby><cites>FETCH-LOGICAL-c403t-f761760ec41bfde0a2279288481e33eab708a56cd6e6ebb557f231903733283c3</cites><orcidid>0000-0002-4754-5820 ; 0000-0002-7557-2121 ; 0000-0002-9818-7090 ; 0000-0003-4847-5104 ; 0000-0003-3224-4926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2779525819/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2779525819?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Nunes, Carlos</creatorcontrib><creatorcontrib>Nunes, Ricardo</creatorcontrib><creatorcontrib>Pires, E. J. Solteiro</creatorcontrib><creatorcontrib>Barroso, João</creatorcontrib><creatorcontrib>Reis, Arsénio</creatorcontrib><title>A Machine Learning Tool to Monitor and Forecast Results from Testing Products in End-of-Line Systems</title><title>Applied sciences</title><description>The massive industrialization of products in a factory environment requires testing the product at a stage before its exportation to the sales market. For example, the end-of-line tests at Continental Advanced Antenna contribute to the validation of an antenna’s functionality, a product manufactured by this organization. In addition, the storage of information from the testing process allows the data manipulation through automated machine learning algorithms in search of a beneficial contribution. Studies in this area (automatic learning/machine learning) lead to the search and development of tools designed with objectives such as preventing anomalies in the production line, predictive maintenance, product quality assurance, forecast demand, forecasting safety problems, increasing resources, proactive maintenance, resource scalability, reduced production time, and anomaly detection, isolation, and correction. Once applied to the manufacturing environment, these advantages make the EOL system more productive, reliable, and less time-consuming. This way, a tool is proposed that allows the visualization and previous detection of trends associated with faults in the antenna testing system. Furthermore, it focuses on predicting failures at Continental’s EOL.</description><subject>Algorithms</subject><subject>Anomalies</subject><subject>Antennas</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>data analysis</subject><subject>Data mining</subject><subject>Design</subject><subject>end-of-line testing</subject><subject>Fault detection</subject><subject>Forecasts and trends</subject><subject>Industrial development</subject><subject>industry</subject><subject>Information storage</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Manufacturing</subject><subject>Predictive maintenance</subject><subject>Product quality</subject><subject>Product testing</subject><subject>Production lines</subject><subject>Quality assurance</subject><subject>Quality control</subject><subject>Research methodology</subject><subject>Science</subject><subject>Trends</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUFrVDEQxx-iYKk9-QUCHuXVJJP3khyX0mphi6LrOeQlkzXLbrIm2UO_vVlXpDOHGf7M_8cMMwzvGb0F0PSTPR4ZUMH5DK-GK07lPIJg8vWL_u1wU-uO9tAMFKNXg1-RJ-t-xYRkjbakmLZkk_OetEyecootF2KTJw-5oLO1ke9YT_tWSSj5QDZY29nxrWR_cl2NidwnP-Ywrs_IH8-14aG-G94Eu694869eDz8f7jd3X8b118-Pd6v16ASFNgY5MzlTdIItwSO1nEvNlRKKIQDaRVJlp9n5GWdclmmSgQPTFCQAV-Dgeni8cH22O3Ms8WDLs8k2mr9CLltjS4tuj4ZbqsM064UJIbhWmjsUINFSYFx52lkfLqxjyb9P_U6zy6eS-vqGS6knPimm-9TtZWprOzSmkFuxrqfHQ3Q5YYhdX8mJaSU1Y93w8WJwJddaMPxfk1FzfqN58Ub4AwHwjLw</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Nunes, Carlos</creator><creator>Nunes, Ricardo</creator><creator>Pires, E. J. Solteiro</creator><creator>Barroso, João</creator><creator>Reis, Arsénio</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4754-5820</orcidid><orcidid>https://orcid.org/0000-0002-7557-2121</orcidid><orcidid>https://orcid.org/0000-0002-9818-7090</orcidid><orcidid>https://orcid.org/0000-0003-4847-5104</orcidid><orcidid>https://orcid.org/0000-0003-3224-4926</orcidid></search><sort><creationdate>20230201</creationdate><title>A Machine Learning Tool to Monitor and Forecast Results from Testing Products in End-of-Line Systems</title><author>Nunes, Carlos ; Nunes, Ricardo ; Pires, E. J. Solteiro ; Barroso, João ; Reis, Arsénio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-f761760ec41bfde0a2279288481e33eab708a56cd6e6ebb557f231903733283c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>Antennas</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>data analysis</topic><topic>Data mining</topic><topic>Design</topic><topic>end-of-line testing</topic><topic>Fault detection</topic><topic>Forecasts and trends</topic><topic>Industrial development</topic><topic>industry</topic><topic>Information storage</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Manufacturing</topic><topic>Predictive maintenance</topic><topic>Product quality</topic><topic>Product testing</topic><topic>Production lines</topic><topic>Quality assurance</topic><topic>Quality control</topic><topic>Research methodology</topic><topic>Science</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nunes, Carlos</creatorcontrib><creatorcontrib>Nunes, Ricardo</creatorcontrib><creatorcontrib>Pires, E. J. Solteiro</creatorcontrib><creatorcontrib>Barroso, João</creatorcontrib><creatorcontrib>Reis, Arsénio</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nunes, Carlos</au><au>Nunes, Ricardo</au><au>Pires, E. J. Solteiro</au><au>Barroso, João</au><au>Reis, Arsénio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Machine Learning Tool to Monitor and Forecast Results from Testing Products in End-of-Line Systems</atitle><jtitle>Applied sciences</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>13</volume><issue>4</issue><spage>2263</spage><pages>2263-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>The massive industrialization of products in a factory environment requires testing the product at a stage before its exportation to the sales market. For example, the end-of-line tests at Continental Advanced Antenna contribute to the validation of an antenna’s functionality, a product manufactured by this organization. In addition, the storage of information from the testing process allows the data manipulation through automated machine learning algorithms in search of a beneficial contribution. Studies in this area (automatic learning/machine learning) lead to the search and development of tools designed with objectives such as preventing anomalies in the production line, predictive maintenance, product quality assurance, forecast demand, forecasting safety problems, increasing resources, proactive maintenance, resource scalability, reduced production time, and anomaly detection, isolation, and correction. Once applied to the manufacturing environment, these advantages make the EOL system more productive, reliable, and less time-consuming. This way, a tool is proposed that allows the visualization and previous detection of trends associated with faults in the antenna testing system. Furthermore, it focuses on predicting failures at Continental’s EOL.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app13042263</doi><orcidid>https://orcid.org/0000-0002-4754-5820</orcidid><orcidid>https://orcid.org/0000-0002-7557-2121</orcidid><orcidid>https://orcid.org/0000-0002-9818-7090</orcidid><orcidid>https://orcid.org/0000-0003-4847-5104</orcidid><orcidid>https://orcid.org/0000-0003-3224-4926</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2023-02, Vol.13 (4), p.2263
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2a09f569b144429892ce437ea03128d0
source Publicly Available Content Database
subjects Algorithms
Anomalies
Antennas
Artificial intelligence
Automation
data analysis
Data mining
Design
end-of-line testing
Fault detection
Forecasts and trends
Industrial development
industry
Information storage
Learning algorithms
Machine learning
Manufacturing
Predictive maintenance
Product quality
Product testing
Production lines
Quality assurance
Quality control
Research methodology
Science
Trends
title A Machine Learning Tool to Monitor and Forecast Results from Testing Products in End-of-Line Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A47%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Machine%20Learning%20Tool%20to%20Monitor%20and%20Forecast%20Results%20from%20Testing%20Products%20in%20End-of-Line%20Systems&rft.jtitle=Applied%20sciences&rft.au=Nunes,%20Carlos&rft.date=2023-02-01&rft.volume=13&rft.issue=4&rft.spage=2263&rft.pages=2263-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app13042263&rft_dat=%3Cgale_doaj_%3EA751987911%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-f761760ec41bfde0a2279288481e33eab708a56cd6e6ebb557f231903733283c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2779525819&rft_id=info:pmid/&rft_galeid=A751987911&rfr_iscdi=true