Loading…
A Machine Learning Tool to Monitor and Forecast Results from Testing Products in End-of-Line Systems
The massive industrialization of products in a factory environment requires testing the product at a stage before its exportation to the sales market. For example, the end-of-line tests at Continental Advanced Antenna contribute to the validation of an antenna’s functionality, a product manufactured...
Saved in:
Published in: | Applied sciences 2023-02, Vol.13 (4), p.2263 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c403t-f761760ec41bfde0a2279288481e33eab708a56cd6e6ebb557f231903733283c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c403t-f761760ec41bfde0a2279288481e33eab708a56cd6e6ebb557f231903733283c3 |
container_end_page | |
container_issue | 4 |
container_start_page | 2263 |
container_title | Applied sciences |
container_volume | 13 |
creator | Nunes, Carlos Nunes, Ricardo Pires, E. J. Solteiro Barroso, João Reis, Arsénio |
description | The massive industrialization of products in a factory environment requires testing the product at a stage before its exportation to the sales market. For example, the end-of-line tests at Continental Advanced Antenna contribute to the validation of an antenna’s functionality, a product manufactured by this organization. In addition, the storage of information from the testing process allows the data manipulation through automated machine learning algorithms in search of a beneficial contribution. Studies in this area (automatic learning/machine learning) lead to the search and development of tools designed with objectives such as preventing anomalies in the production line, predictive maintenance, product quality assurance, forecast demand, forecasting safety problems, increasing resources, proactive maintenance, resource scalability, reduced production time, and anomaly detection, isolation, and correction. Once applied to the manufacturing environment, these advantages make the EOL system more productive, reliable, and less time-consuming. This way, a tool is proposed that allows the visualization and previous detection of trends associated with faults in the antenna testing system. Furthermore, it focuses on predicting failures at Continental’s EOL. |
doi_str_mv | 10.3390/app13042263 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2a09f569b144429892ce437ea03128d0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A751987911</galeid><doaj_id>oai_doaj_org_article_2a09f569b144429892ce437ea03128d0</doaj_id><sourcerecordid>A751987911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-f761760ec41bfde0a2279288481e33eab708a56cd6e6ebb557f231903733283c3</originalsourceid><addsrcrecordid>eNpNkUFrVDEQxx-iYKk9-QUCHuXVJJP3khyX0mphi6LrOeQlkzXLbrIm2UO_vVlXpDOHGf7M_8cMMwzvGb0F0PSTPR4ZUMH5DK-GK07lPIJg8vWL_u1wU-uO9tAMFKNXg1-RJ-t-xYRkjbakmLZkk_OetEyecootF2KTJw-5oLO1ke9YT_tWSSj5QDZY29nxrWR_cl2NidwnP-Ywrs_IH8-14aG-G94Eu694869eDz8f7jd3X8b118-Pd6v16ASFNgY5MzlTdIItwSO1nEvNlRKKIQDaRVJlp9n5GWdclmmSgQPTFCQAV-Dgeni8cH22O3Ms8WDLs8k2mr9CLltjS4tuj4ZbqsM064UJIbhWmjsUINFSYFx52lkfLqxjyb9P_U6zy6eS-vqGS6knPimm-9TtZWprOzSmkFuxrqfHQ3Q5YYhdX8mJaSU1Y93w8WJwJddaMPxfk1FzfqN58Ub4AwHwjLw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779525819</pqid></control><display><type>article</type><title>A Machine Learning Tool to Monitor and Forecast Results from Testing Products in End-of-Line Systems</title><source>Publicly Available Content Database</source><creator>Nunes, Carlos ; Nunes, Ricardo ; Pires, E. J. Solteiro ; Barroso, João ; Reis, Arsénio</creator><creatorcontrib>Nunes, Carlos ; Nunes, Ricardo ; Pires, E. J. Solteiro ; Barroso, João ; Reis, Arsénio</creatorcontrib><description>The massive industrialization of products in a factory environment requires testing the product at a stage before its exportation to the sales market. For example, the end-of-line tests at Continental Advanced Antenna contribute to the validation of an antenna’s functionality, a product manufactured by this organization. In addition, the storage of information from the testing process allows the data manipulation through automated machine learning algorithms in search of a beneficial contribution. Studies in this area (automatic learning/machine learning) lead to the search and development of tools designed with objectives such as preventing anomalies in the production line, predictive maintenance, product quality assurance, forecast demand, forecasting safety problems, increasing resources, proactive maintenance, resource scalability, reduced production time, and anomaly detection, isolation, and correction. Once applied to the manufacturing environment, these advantages make the EOL system more productive, reliable, and less time-consuming. This way, a tool is proposed that allows the visualization and previous detection of trends associated with faults in the antenna testing system. Furthermore, it focuses on predicting failures at Continental’s EOL.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app13042263</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Anomalies ; Antennas ; Artificial intelligence ; Automation ; data analysis ; Data mining ; Design ; end-of-line testing ; Fault detection ; Forecasts and trends ; Industrial development ; industry ; Information storage ; Learning algorithms ; Machine learning ; Manufacturing ; Predictive maintenance ; Product quality ; Product testing ; Production lines ; Quality assurance ; Quality control ; Research methodology ; Science ; Trends</subject><ispartof>Applied sciences, 2023-02, Vol.13 (4), p.2263</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-f761760ec41bfde0a2279288481e33eab708a56cd6e6ebb557f231903733283c3</citedby><cites>FETCH-LOGICAL-c403t-f761760ec41bfde0a2279288481e33eab708a56cd6e6ebb557f231903733283c3</cites><orcidid>0000-0002-4754-5820 ; 0000-0002-7557-2121 ; 0000-0002-9818-7090 ; 0000-0003-4847-5104 ; 0000-0003-3224-4926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2779525819/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2779525819?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Nunes, Carlos</creatorcontrib><creatorcontrib>Nunes, Ricardo</creatorcontrib><creatorcontrib>Pires, E. J. Solteiro</creatorcontrib><creatorcontrib>Barroso, João</creatorcontrib><creatorcontrib>Reis, Arsénio</creatorcontrib><title>A Machine Learning Tool to Monitor and Forecast Results from Testing Products in End-of-Line Systems</title><title>Applied sciences</title><description>The massive industrialization of products in a factory environment requires testing the product at a stage before its exportation to the sales market. For example, the end-of-line tests at Continental Advanced Antenna contribute to the validation of an antenna’s functionality, a product manufactured by this organization. In addition, the storage of information from the testing process allows the data manipulation through automated machine learning algorithms in search of a beneficial contribution. Studies in this area (automatic learning/machine learning) lead to the search and development of tools designed with objectives such as preventing anomalies in the production line, predictive maintenance, product quality assurance, forecast demand, forecasting safety problems, increasing resources, proactive maintenance, resource scalability, reduced production time, and anomaly detection, isolation, and correction. Once applied to the manufacturing environment, these advantages make the EOL system more productive, reliable, and less time-consuming. This way, a tool is proposed that allows the visualization and previous detection of trends associated with faults in the antenna testing system. Furthermore, it focuses on predicting failures at Continental’s EOL.</description><subject>Algorithms</subject><subject>Anomalies</subject><subject>Antennas</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>data analysis</subject><subject>Data mining</subject><subject>Design</subject><subject>end-of-line testing</subject><subject>Fault detection</subject><subject>Forecasts and trends</subject><subject>Industrial development</subject><subject>industry</subject><subject>Information storage</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Manufacturing</subject><subject>Predictive maintenance</subject><subject>Product quality</subject><subject>Product testing</subject><subject>Production lines</subject><subject>Quality assurance</subject><subject>Quality control</subject><subject>Research methodology</subject><subject>Science</subject><subject>Trends</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUFrVDEQxx-iYKk9-QUCHuXVJJP3khyX0mphi6LrOeQlkzXLbrIm2UO_vVlXpDOHGf7M_8cMMwzvGb0F0PSTPR4ZUMH5DK-GK07lPIJg8vWL_u1wU-uO9tAMFKNXg1-RJ-t-xYRkjbakmLZkk_OetEyecootF2KTJw-5oLO1ke9YT_tWSSj5QDZY29nxrWR_cl2NidwnP-Ywrs_IH8-14aG-G94Eu694869eDz8f7jd3X8b118-Pd6v16ASFNgY5MzlTdIItwSO1nEvNlRKKIQDaRVJlp9n5GWdclmmSgQPTFCQAV-Dgeni8cH22O3Ms8WDLs8k2mr9CLltjS4tuj4ZbqsM064UJIbhWmjsUINFSYFx52lkfLqxjyb9P_U6zy6eS-vqGS6knPimm-9TtZWprOzSmkFuxrqfHQ3Q5YYhdX8mJaSU1Y93w8WJwJddaMPxfk1FzfqN58Ub4AwHwjLw</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Nunes, Carlos</creator><creator>Nunes, Ricardo</creator><creator>Pires, E. J. Solteiro</creator><creator>Barroso, João</creator><creator>Reis, Arsénio</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4754-5820</orcidid><orcidid>https://orcid.org/0000-0002-7557-2121</orcidid><orcidid>https://orcid.org/0000-0002-9818-7090</orcidid><orcidid>https://orcid.org/0000-0003-4847-5104</orcidid><orcidid>https://orcid.org/0000-0003-3224-4926</orcidid></search><sort><creationdate>20230201</creationdate><title>A Machine Learning Tool to Monitor and Forecast Results from Testing Products in End-of-Line Systems</title><author>Nunes, Carlos ; Nunes, Ricardo ; Pires, E. J. Solteiro ; Barroso, João ; Reis, Arsénio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-f761760ec41bfde0a2279288481e33eab708a56cd6e6ebb557f231903733283c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>Antennas</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>data analysis</topic><topic>Data mining</topic><topic>Design</topic><topic>end-of-line testing</topic><topic>Fault detection</topic><topic>Forecasts and trends</topic><topic>Industrial development</topic><topic>industry</topic><topic>Information storage</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Manufacturing</topic><topic>Predictive maintenance</topic><topic>Product quality</topic><topic>Product testing</topic><topic>Production lines</topic><topic>Quality assurance</topic><topic>Quality control</topic><topic>Research methodology</topic><topic>Science</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nunes, Carlos</creatorcontrib><creatorcontrib>Nunes, Ricardo</creatorcontrib><creatorcontrib>Pires, E. J. Solteiro</creatorcontrib><creatorcontrib>Barroso, João</creatorcontrib><creatorcontrib>Reis, Arsénio</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nunes, Carlos</au><au>Nunes, Ricardo</au><au>Pires, E. J. Solteiro</au><au>Barroso, João</au><au>Reis, Arsénio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Machine Learning Tool to Monitor and Forecast Results from Testing Products in End-of-Line Systems</atitle><jtitle>Applied sciences</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>13</volume><issue>4</issue><spage>2263</spage><pages>2263-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>The massive industrialization of products in a factory environment requires testing the product at a stage before its exportation to the sales market. For example, the end-of-line tests at Continental Advanced Antenna contribute to the validation of an antenna’s functionality, a product manufactured by this organization. In addition, the storage of information from the testing process allows the data manipulation through automated machine learning algorithms in search of a beneficial contribution. Studies in this area (automatic learning/machine learning) lead to the search and development of tools designed with objectives such as preventing anomalies in the production line, predictive maintenance, product quality assurance, forecast demand, forecasting safety problems, increasing resources, proactive maintenance, resource scalability, reduced production time, and anomaly detection, isolation, and correction. Once applied to the manufacturing environment, these advantages make the EOL system more productive, reliable, and less time-consuming. This way, a tool is proposed that allows the visualization and previous detection of trends associated with faults in the antenna testing system. Furthermore, it focuses on predicting failures at Continental’s EOL.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app13042263</doi><orcidid>https://orcid.org/0000-0002-4754-5820</orcidid><orcidid>https://orcid.org/0000-0002-7557-2121</orcidid><orcidid>https://orcid.org/0000-0002-9818-7090</orcidid><orcidid>https://orcid.org/0000-0003-4847-5104</orcidid><orcidid>https://orcid.org/0000-0003-3224-4926</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2023-02, Vol.13 (4), p.2263 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2a09f569b144429892ce437ea03128d0 |
source | Publicly Available Content Database |
subjects | Algorithms Anomalies Antennas Artificial intelligence Automation data analysis Data mining Design end-of-line testing Fault detection Forecasts and trends Industrial development industry Information storage Learning algorithms Machine learning Manufacturing Predictive maintenance Product quality Product testing Production lines Quality assurance Quality control Research methodology Science Trends |
title | A Machine Learning Tool to Monitor and Forecast Results from Testing Products in End-of-Line Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A47%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Machine%20Learning%20Tool%20to%20Monitor%20and%20Forecast%20Results%20from%20Testing%20Products%20in%20End-of-Line%20Systems&rft.jtitle=Applied%20sciences&rft.au=Nunes,%20Carlos&rft.date=2023-02-01&rft.volume=13&rft.issue=4&rft.spage=2263&rft.pages=2263-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app13042263&rft_dat=%3Cgale_doaj_%3EA751987911%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-f761760ec41bfde0a2279288481e33eab708a56cd6e6ebb557f231903733283c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2779525819&rft_id=info:pmid/&rft_galeid=A751987911&rfr_iscdi=true |