Loading…
Potential Therapeutic Functions of PU-91 and Quercetin in Personalized Cybrids Derived from Patients with Age-Related Macular Degeneration, Keratoconus, and Glaucoma
The aim of this study is to investigate the therapeutic potential of higher doses of PU-91, quercetin, or in combination on transmitochondrial cybrid cell lines with various mtDNA haplogroups derived from patients with age-related macular degeneration (AMD), glaucoma (Glc), keratoconus (KC), and nor...
Saved in:
Published in: | Antioxidants 2023-06, Vol.12 (7), p.1326 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The aim of this study is to investigate the therapeutic potential of higher doses of PU-91, quercetin, or in combination on transmitochondrial cybrid cell lines with various mtDNA haplogroups derived from patients with age-related macular degeneration (AMD), glaucoma (Glc), keratoconus (KC), and normal (NL) individuals. Cybrids were treated with PU-91 (P) (200 µM) alone, quercetin (Q) (20 µM) alone, or a combination of PU-91 and quercetin (P+Q) for 48 h. Cellular metabolism and the intracellular levels of reactive oxygen species (ROS) were measured by MTT and H2DCFDA assays, respectively. Quantitative real-time PCR was performed to measure the expression levels of genes associated with mitochondrial biogenesis, antioxidant enzymes, inflammation, apoptosis, and senescence pathways. PU-91(P) (i) improves cellular metabolism in AMD cybrids, (ii) decreases ROS production in AMD cybrids, and (iii) downregulates the expression of
in AMD cybrids. Combination treatment of PU-91 plus quercetin (P+Q) (i) improves cellular metabolism in AMD, (ii) induces higher expression levels of
,
,
, and
in AMD cybrids, and (iii) upregulates
genes expression in all disease cybrids. Our study demonstrated that the P+Q combination improves cellular metabolism and mitochondrial biogenesis in AMD cybrids, but senescence is greatly exacerbated in all cybrids regardless of disease type by the P+Q combined treatment. |
---|---|
ISSN: | 2076-3921 2076-3921 |
DOI: | 10.3390/antiox12071326 |