Loading…

Direct Numerical Simulation of Concentration and Orientation Distribution of Fibers in a Mixing Layer

The concentration and orientation of suspended fibers in a mixing layer are investigated numerically. Two cases (diffusive and nondiffusive) are investigated for the fiber concentration distribution. The fine structures of the instantaneous distributions under these two cases are very different due...

Full description

Saved in:
Bibliographic Details
Published in:Abstract and Applied Analysis 2013-01, Vol.2013 (2013), p.612-619-1164
Main Authors: Zhou, Kun, Yang, Wei, He, Zhu, Xiao, Ming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The concentration and orientation of suspended fibers in a mixing layer are investigated numerically. Two cases (diffusive and nondiffusive) are investigated for the fiber concentration distribution. The fine structures of the instantaneous distributions under these two cases are very different due to molecular diffusion. Sharp front of concentration is observed in the nondiffusive case. However, there is no obvious difference in the mean concentration between the two cases. With regard to the orientation, a fiber may rotate periodically or approach an asymptotic orientation, which is determined by a determinant defined with the stain rate. The symmetric part of the strain rate tends to make a fiber align to an asymptotic orientation, while the antisymmetric part drives a fiber to rotate. When a fluid parcel passes through a region with relatively high shear rate, fibers carried by the fluid parcel are most likely to rotate incessantly. On the other hand, in the region of relatively high extension rate, fibers tend to align to some asymptotic orientation. Generally, fibers tend to align with the shear plane. This fact has significant implications in predicting the rheological properties of fiber suspension flows.
ISSN:1085-3375
1687-0409
DOI:10.1155/2013/845872