Loading…

CBCT-based synthetic CT generated using CycleGAN with HU correction for adaptive radiotherapy of nasopharyngeal carcinoma

This study aims to utilize a hybrid approach of phantom correction and deep learning for synthesized CT (sCT) images generation based on cone-beam CT (CBCT) images for nasopharyngeal carcinoma (NPC). 52 CBCT/CT paired images of NPC patients were used for model training (41), validation (11). Hounsfi...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2023-04, Vol.13 (1), p.6624-6624, Article 6624
Main Authors: Jihong, Chen, Kerun, Quan, Kaiqiang, Chen, Xiuchun, Zhang, Yimin, Zhou, penggang, Bai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study aims to utilize a hybrid approach of phantom correction and deep learning for synthesized CT (sCT) images generation based on cone-beam CT (CBCT) images for nasopharyngeal carcinoma (NPC). 52 CBCT/CT paired images of NPC patients were used for model training (41), validation (11). Hounsfield Units (HU) of the CBCT images was calibrated by a commercially available CIRS phantom. Then the original CBCT and the corrected CBCT (CBCT_cor) were trained separately with the same cycle generative adversarial network (CycleGAN) to generate SCT1 and SCT2. The mean error and mean absolute error (MAE) were used to quantify the image quality. For validations, the contours and treatment plans in CT images were transferred to original CBCT, CBCT_cor, SCT1 and SCT2 for dosimetric comparison. Dose distribution, dosimetric parameters and 3D gamma passing rate were analyzed. Compared with rigidly registered CT (RCT), the MAE of CBCT, CBCT_cor, SCT1 and SCT2 were 346.11 ± 13.58 HU, 145.95 ± 17.64 HU, 105.62 ± 16.08 HU and 83.51 ± 7.71 HU, respectively. Moreover, the average dosimetric parameter differences for the CBCT_cor, SCT1 and SCT2 were 2.7% ± 1.4%, 1.2% ± 1.0% and 0.6% ± 0.6%, respectively. Using the dose distribution of RCT images as reference, the 3D gamma passing rate of the hybrid method was significantly better than the other methods. The effectiveness of CBCT-based sCT generated using CycleGAN with HU correction for adaptive radiotherapy of nasopharyngeal carcinoma was confirmed. The image quality and dose accuracy of SCT2 were outperform the simple CycleGAN method. This finding has great significance for the clinical application of adaptive radiotherapy for NPC.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-33472-w