Loading…

A Predictive Analysis of Beach Susceptibility to Jellyfish Arrivals in Costa del Sol

This study investigates the susceptibility of beaches to jellyfish arrivals, focusing on the summer seasons from 2015 to 2020. The objective was to develop a predictive model that identifies the characteristics of beaches prone to higher jellyfish presence. This research utilized data from the Infom...

Full description

Saved in:
Bibliographic Details
Published in:Journal of marine science and engineering 2024-12, Vol.12 (12), p.2316
Main Authors: de la Fuente Roselló, Ana, Perles Roselló, María Jesús, Cantarero Prados, Francisco José
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1696-accd6e7f62e85f3301e146b5bcbe2612ab6b46a55383b1bbaf997a3ec9fcfd183
container_end_page
container_issue 12
container_start_page 2316
container_title Journal of marine science and engineering
container_volume 12
creator de la Fuente Roselló, Ana
Perles Roselló, María Jesús
Cantarero Prados, Francisco José
description This study investigates the susceptibility of beaches to jellyfish arrivals, focusing on the summer seasons from 2015 to 2020. The objective was to develop a predictive model that identifies the characteristics of beaches prone to higher jellyfish presence. This research utilized data from the Infomedusa application, with a focus on key structural and circumstantial variables, such as beach orientation, coastal currents, and morphology. Binomial logistic regression was applied to two models to assess the influence of these variables on jellyfish occurrence. The results showed that beaches oriented toward the east and south, with protection from natural or artificial barriers, and those with limited open sea exposure are more likely to experience jellyfish arrivals. Conversely, beaches facing southwest, with opposing currents and freshwater inflows, tend to have lower risks. Although the models’ predictive capacity was moderate, with a 76% validation rate against empirical data, they provided valuable insights for coastal management and risk prevention. The findings highlight the importance of beach-specific characteristics in forecasting jellyfish presence, contributing to more effective coastal protection strategies.
doi_str_mv 10.3390/jmse12122316
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2a409a04ccd24e9f921e721948264060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2a409a04ccd24e9f921e721948264060</doaj_id><sourcerecordid>3149660645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1696-accd6e7f62e85f3301e146b5bcbe2612ab6b46a55383b1bbaf997a3ec9fcfd183</originalsourceid><addsrcrecordid>eNpNUU1LAzEUXETBUnvzBwS8upqvzW6OtfhRKSi0nkOSfbFZtk1NtoX9965WpO_yHsMw85jJsmuC7xiT-L7ZJCCUUMqIOMtGFJdlThih5yf3ZTZJqcHDVFQQLEbZaoreI9Tedv4AaLrVbZ98QsGhB9B2jZb7ZGHXeeNb3_WoC-gV2rZ3Pq3RNEZ_0G1CfotmIXUa1dCiZWivsgs34DD52-Ps4-lxNXvJF2_P89l0kVsipMi1tbWA0gkKVeEYwwQIF6Yw1sDwHtVGGC50UbCKGWKMdlKWmoGVzrqaVGyczY-6ddCN2kW_0bFXQXv1C4T4qXTsvG1BUc2x1JgPlpSDdJISKCmRfAiCY4EHrZuj1i6Grz2kTjVhH4c8kmKESyGw4MXAuj2ybAwpRXD_rgSrnxrUaQ3sG-rQeW0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149660645</pqid></control><display><type>article</type><title>A Predictive Analysis of Beach Susceptibility to Jellyfish Arrivals in Costa del Sol</title><source>Publicly Available Content (ProQuest)</source><creator>de la Fuente Roselló, Ana ; Perles Roselló, María Jesús ; Cantarero Prados, Francisco José</creator><creatorcontrib>de la Fuente Roselló, Ana ; Perles Roselló, María Jesús ; Cantarero Prados, Francisco José</creatorcontrib><description>This study investigates the susceptibility of beaches to jellyfish arrivals, focusing on the summer seasons from 2015 to 2020. The objective was to develop a predictive model that identifies the characteristics of beaches prone to higher jellyfish presence. This research utilized data from the Infomedusa application, with a focus on key structural and circumstantial variables, such as beach orientation, coastal currents, and morphology. Binomial logistic regression was applied to two models to assess the influence of these variables on jellyfish occurrence. The results showed that beaches oriented toward the east and south, with protection from natural or artificial barriers, and those with limited open sea exposure are more likely to experience jellyfish arrivals. Conversely, beaches facing southwest, with opposing currents and freshwater inflows, tend to have lower risks. Although the models’ predictive capacity was moderate, with a 76% validation rate against empirical data, they provided valuable insights for coastal management and risk prevention. The findings highlight the importance of beach-specific characteristics in forecasting jellyfish presence, contributing to more effective coastal protection strategies.</description><identifier>ISSN: 2077-1312</identifier><identifier>EISSN: 2077-1312</identifier><identifier>DOI: 10.3390/jmse12122316</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Arrivals ; Barriers ; beach morphology ; Beaches ; Climate change ; Cnidaria ; Coastal currents ; Coastal management ; Coastal morphology ; Coastal zone management ; Coasts ; Environmental protection ; Freshwater ; Geomorphology ; Global warming ; Inland water environment ; jellyfish susceptibility ; Marine invertebrates ; Mediterranean Sea ; Prediction models ; predictive modeling ; Regression analysis ; Risk assessment ; Salinity ; Sea currents ; Storm damage ; Tourism ; Variables</subject><ispartof>Journal of marine science and engineering, 2024-12, Vol.12 (12), p.2316</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1696-accd6e7f62e85f3301e146b5bcbe2612ab6b46a55383b1bbaf997a3ec9fcfd183</cites><orcidid>0000-0002-4811-8724 ; 0000-0003-4337-9439</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3149660645/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3149660645?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>de la Fuente Roselló, Ana</creatorcontrib><creatorcontrib>Perles Roselló, María Jesús</creatorcontrib><creatorcontrib>Cantarero Prados, Francisco José</creatorcontrib><title>A Predictive Analysis of Beach Susceptibility to Jellyfish Arrivals in Costa del Sol</title><title>Journal of marine science and engineering</title><description>This study investigates the susceptibility of beaches to jellyfish arrivals, focusing on the summer seasons from 2015 to 2020. The objective was to develop a predictive model that identifies the characteristics of beaches prone to higher jellyfish presence. This research utilized data from the Infomedusa application, with a focus on key structural and circumstantial variables, such as beach orientation, coastal currents, and morphology. Binomial logistic regression was applied to two models to assess the influence of these variables on jellyfish occurrence. The results showed that beaches oriented toward the east and south, with protection from natural or artificial barriers, and those with limited open sea exposure are more likely to experience jellyfish arrivals. Conversely, beaches facing southwest, with opposing currents and freshwater inflows, tend to have lower risks. Although the models’ predictive capacity was moderate, with a 76% validation rate against empirical data, they provided valuable insights for coastal management and risk prevention. The findings highlight the importance of beach-specific characteristics in forecasting jellyfish presence, contributing to more effective coastal protection strategies.</description><subject>Arrivals</subject><subject>Barriers</subject><subject>beach morphology</subject><subject>Beaches</subject><subject>Climate change</subject><subject>Cnidaria</subject><subject>Coastal currents</subject><subject>Coastal management</subject><subject>Coastal morphology</subject><subject>Coastal zone management</subject><subject>Coasts</subject><subject>Environmental protection</subject><subject>Freshwater</subject><subject>Geomorphology</subject><subject>Global warming</subject><subject>Inland water environment</subject><subject>jellyfish susceptibility</subject><subject>Marine invertebrates</subject><subject>Mediterranean Sea</subject><subject>Prediction models</subject><subject>predictive modeling</subject><subject>Regression analysis</subject><subject>Risk assessment</subject><subject>Salinity</subject><subject>Sea currents</subject><subject>Storm damage</subject><subject>Tourism</subject><subject>Variables</subject><issn>2077-1312</issn><issn>2077-1312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEUXETBUnvzBwS8upqvzW6OtfhRKSi0nkOSfbFZtk1NtoX9965WpO_yHsMw85jJsmuC7xiT-L7ZJCCUUMqIOMtGFJdlThih5yf3ZTZJqcHDVFQQLEbZaoreI9Tedv4AaLrVbZ98QsGhB9B2jZb7ZGHXeeNb3_WoC-gV2rZ3Pq3RNEZ_0G1CfotmIXUa1dCiZWivsgs34DD52-Ps4-lxNXvJF2_P89l0kVsipMi1tbWA0gkKVeEYwwQIF6Yw1sDwHtVGGC50UbCKGWKMdlKWmoGVzrqaVGyczY-6ddCN2kW_0bFXQXv1C4T4qXTsvG1BUc2x1JgPlpSDdJISKCmRfAiCY4EHrZuj1i6Grz2kTjVhH4c8kmKESyGw4MXAuj2ybAwpRXD_rgSrnxrUaQ3sG-rQeW0</recordid><startdate>20241217</startdate><enddate>20241217</enddate><creator>de la Fuente Roselló, Ana</creator><creator>Perles Roselló, María Jesús</creator><creator>Cantarero Prados, Francisco José</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TN</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4811-8724</orcidid><orcidid>https://orcid.org/0000-0003-4337-9439</orcidid></search><sort><creationdate>20241217</creationdate><title>A Predictive Analysis of Beach Susceptibility to Jellyfish Arrivals in Costa del Sol</title><author>de la Fuente Roselló, Ana ; Perles Roselló, María Jesús ; Cantarero Prados, Francisco José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1696-accd6e7f62e85f3301e146b5bcbe2612ab6b46a55383b1bbaf997a3ec9fcfd183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arrivals</topic><topic>Barriers</topic><topic>beach morphology</topic><topic>Beaches</topic><topic>Climate change</topic><topic>Cnidaria</topic><topic>Coastal currents</topic><topic>Coastal management</topic><topic>Coastal morphology</topic><topic>Coastal zone management</topic><topic>Coasts</topic><topic>Environmental protection</topic><topic>Freshwater</topic><topic>Geomorphology</topic><topic>Global warming</topic><topic>Inland water environment</topic><topic>jellyfish susceptibility</topic><topic>Marine invertebrates</topic><topic>Mediterranean Sea</topic><topic>Prediction models</topic><topic>predictive modeling</topic><topic>Regression analysis</topic><topic>Risk assessment</topic><topic>Salinity</topic><topic>Sea currents</topic><topic>Storm damage</topic><topic>Tourism</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de la Fuente Roselló, Ana</creatorcontrib><creatorcontrib>Perles Roselló, María Jesús</creatorcontrib><creatorcontrib>Cantarero Prados, Francisco José</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of marine science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de la Fuente Roselló, Ana</au><au>Perles Roselló, María Jesús</au><au>Cantarero Prados, Francisco José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Predictive Analysis of Beach Susceptibility to Jellyfish Arrivals in Costa del Sol</atitle><jtitle>Journal of marine science and engineering</jtitle><date>2024-12-17</date><risdate>2024</risdate><volume>12</volume><issue>12</issue><spage>2316</spage><pages>2316-</pages><issn>2077-1312</issn><eissn>2077-1312</eissn><abstract>This study investigates the susceptibility of beaches to jellyfish arrivals, focusing on the summer seasons from 2015 to 2020. The objective was to develop a predictive model that identifies the characteristics of beaches prone to higher jellyfish presence. This research utilized data from the Infomedusa application, with a focus on key structural and circumstantial variables, such as beach orientation, coastal currents, and morphology. Binomial logistic regression was applied to two models to assess the influence of these variables on jellyfish occurrence. The results showed that beaches oriented toward the east and south, with protection from natural or artificial barriers, and those with limited open sea exposure are more likely to experience jellyfish arrivals. Conversely, beaches facing southwest, with opposing currents and freshwater inflows, tend to have lower risks. Although the models’ predictive capacity was moderate, with a 76% validation rate against empirical data, they provided valuable insights for coastal management and risk prevention. The findings highlight the importance of beach-specific characteristics in forecasting jellyfish presence, contributing to more effective coastal protection strategies.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/jmse12122316</doi><orcidid>https://orcid.org/0000-0002-4811-8724</orcidid><orcidid>https://orcid.org/0000-0003-4337-9439</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2077-1312
ispartof Journal of marine science and engineering, 2024-12, Vol.12 (12), p.2316
issn 2077-1312
2077-1312
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2a409a04ccd24e9f921e721948264060
source Publicly Available Content (ProQuest)
subjects Arrivals
Barriers
beach morphology
Beaches
Climate change
Cnidaria
Coastal currents
Coastal management
Coastal morphology
Coastal zone management
Coasts
Environmental protection
Freshwater
Geomorphology
Global warming
Inland water environment
jellyfish susceptibility
Marine invertebrates
Mediterranean Sea
Prediction models
predictive modeling
Regression analysis
Risk assessment
Salinity
Sea currents
Storm damage
Tourism
Variables
title A Predictive Analysis of Beach Susceptibility to Jellyfish Arrivals in Costa del Sol
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A38%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Predictive%20Analysis%20of%20Beach%20Susceptibility%20to%20Jellyfish%20Arrivals%20in%20Costa%20del%20Sol&rft.jtitle=Journal%20of%20marine%20science%20and%20engineering&rft.au=de%20la%20Fuente%20Rosell%C3%B3,%20Ana&rft.date=2024-12-17&rft.volume=12&rft.issue=12&rft.spage=2316&rft.pages=2316-&rft.issn=2077-1312&rft.eissn=2077-1312&rft_id=info:doi/10.3390/jmse12122316&rft_dat=%3Cproquest_doaj_%3E3149660645%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1696-accd6e7f62e85f3301e146b5bcbe2612ab6b46a55383b1bbaf997a3ec9fcfd183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3149660645&rft_id=info:pmid/&rfr_iscdi=true