Loading…
Muskelin regulates actin-dependent synaptic changes and intrinsic brain activity relevant to behavioral and cognitive processes
Muskelin (Mkln1) is implicated in neuronal function, regulating plasma membrane receptor trafficking. However, its influence on intrinsic brain activity and corresponding behavioral processes remains unclear. Here we show that murine Mkln1 knockout causes non-habituating locomotor activity, increase...
Saved in:
Published in: | Communications biology 2022-06, Vol.5 (1), p.589-589, Article 589 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-92b3f42317341bdd37543c2d87881598fd0c2f8999f6297a4fec189417cea25a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-92b3f42317341bdd37543c2d87881598fd0c2f8999f6297a4fec189417cea25a3 |
container_end_page | 589 |
container_issue | 1 |
container_start_page | 589 |
container_title | Communications biology |
container_volume | 5 |
creator | Muhia, Mary YuanXiang, PingAn Sedlacik, Jan Schwarz, Jürgen R. Heisler, Frank F. Gromova, Kira V. Thies, Edda Breiden, Petra Pechmann, Yvonne Kreutz, Michael R. Kneussel, Matthias |
description | Muskelin (Mkln1) is implicated in neuronal function, regulating plasma membrane receptor trafficking. However, its influence on intrinsic brain activity and corresponding behavioral processes remains unclear. Here we show that murine
Mkln1
knockout causes non-habituating locomotor activity, increased exploratory drive, and decreased locomotor response to amphetamine. Muskelin deficiency impairs social novelty detection while promoting the retention of spatial reference memory and fear extinction recall. This is strongly mirrored in either weaker or stronger resting-state functional connectivity between critical circuits mediating locomotor exploration and cognition. We show that
Mkln1
deletion alters dendrite branching and spine structure, coinciding with enhanced AMPAR-mediated synaptic transmission but selective impairment in synaptic potentiation maintenance. We identify muskelin at excitatory synapses and highlight its role in regulating dendritic spine actin stability. Our findings point to aberrant spine actin modulation and changes in glutamatergic synaptic function as critical mechanisms that contribute to the neurobehavioral phenotype arising from
Mkln1
ablation.
A murine muskelin knockout induces increased exploratory drive and alters cognition and functional connectivity. These effects correlate with actin-dependent changes in dendritic branching, spine structure, and AMPAR-mediated synaptic transmission. |
doi_str_mv | 10.1038/s42003-022-03446-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2a57e15d62354e63a3239b6cceda15bf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2a57e15d62354e63a3239b6cceda15bf</doaj_id><sourcerecordid>2677572827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-92b3f42317341bdd37543c2d87881598fd0c2f8999f6297a4fec189417cea25a3</originalsourceid><addsrcrecordid>eNp9kk9v1DAQxSMEolXpF-CAInHhEvDfOL4goapApSIucLYce7LrJWsvdrLSnvjqzG5KaTlwsuX5vWfP-FXVS0reUsK7d0UwQnhDGGsIF6Jt6JPqnHGtG94K9vTB_qy6LGVDCKFa65aL59UZl4pIxdV59evLXH7AGGKdYTWPdoJSWzeF2HjYQfQQp7ocot1NwdVubePqCERfhzjlEAue9tmi_Cjah-mAPiPsLcqmVPewtvuQsh1PGpdWMSAG9S4nB6VAeVE9G-xY4PJuvai-f7z-dvW5uf366ebqw23jpCBTo1nPB8E4VVzQ3nuupOCO-U51HZW6GzxxbOiwwaFlWlkxgKOdFlQ5sExaflHdLL4-2Y3Z5bC1-WCSDeZ0kPLK2Iw9jmCYlQqo9C3jUkDLLcdR9q1z4C2V_YBe7xev3dxvwTucEXb4yPRxJYa1WaW90fhlSkk0eHNnkNPPGcpktqE4GEcbIc3FsBYpxTqmEH39D7pJc444qiPVIkQ0QYotlMuplAzD_WMoMce4mCUuBuNiTnExFEWvHrZxL_kTDgT4AhQs4cfnv3f_x_Y3ij7NWw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676728090</pqid></control><display><type>article</type><title>Muskelin regulates actin-dependent synaptic changes and intrinsic brain activity relevant to behavioral and cognitive processes</title><source>PubMed Central(OA)</source><source>ProQuest - Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Muhia, Mary ; YuanXiang, PingAn ; Sedlacik, Jan ; Schwarz, Jürgen R. ; Heisler, Frank F. ; Gromova, Kira V. ; Thies, Edda ; Breiden, Petra ; Pechmann, Yvonne ; Kreutz, Michael R. ; Kneussel, Matthias</creator><creatorcontrib>Muhia, Mary ; YuanXiang, PingAn ; Sedlacik, Jan ; Schwarz, Jürgen R. ; Heisler, Frank F. ; Gromova, Kira V. ; Thies, Edda ; Breiden, Petra ; Pechmann, Yvonne ; Kreutz, Michael R. ; Kneussel, Matthias</creatorcontrib><description>Muskelin (Mkln1) is implicated in neuronal function, regulating plasma membrane receptor trafficking. However, its influence on intrinsic brain activity and corresponding behavioral processes remains unclear. Here we show that murine
Mkln1
knockout causes non-habituating locomotor activity, increased exploratory drive, and decreased locomotor response to amphetamine. Muskelin deficiency impairs social novelty detection while promoting the retention of spatial reference memory and fear extinction recall. This is strongly mirrored in either weaker or stronger resting-state functional connectivity between critical circuits mediating locomotor exploration and cognition. We show that
Mkln1
deletion alters dendrite branching and spine structure, coinciding with enhanced AMPAR-mediated synaptic transmission but selective impairment in synaptic potentiation maintenance. We identify muskelin at excitatory synapses and highlight its role in regulating dendritic spine actin stability. Our findings point to aberrant spine actin modulation and changes in glutamatergic synaptic function as critical mechanisms that contribute to the neurobehavioral phenotype arising from
Mkln1
ablation.
A murine muskelin knockout induces increased exploratory drive and alters cognition and functional connectivity. These effects correlate with actin-dependent changes in dendritic branching, spine structure, and AMPAR-mediated synaptic transmission.</description><identifier>ISSN: 2399-3642</identifier><identifier>EISSN: 2399-3642</identifier><identifier>DOI: 10.1038/s42003-022-03446-1</identifier><identifier>PMID: 35705737</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14 ; 14/1 ; 14/63 ; 59/57 ; 631/378/2649 ; 631/378/87 ; 64/60 ; 82 ; 82/80 ; 9/30 ; 9/74 ; Actin ; Amphetamines ; Anxiety ; Behavior ; Biology ; Biomedical and Life Sciences ; Biomedical engineering ; Cognition & reasoning ; Cognitive ability ; Dendritic branching ; Dendritic spines ; Exploratory behavior ; Fear conditioning ; Functional morphology ; Genotype & phenotype ; Glutamatergic transmission ; Life Sciences ; Locomotor activity ; Medical research ; Membrane trafficking ; Memory ; Morphology ; Neural networks ; Neurobiology ; Neurosciences ; Phenotypes ; Potentiation ; Protein transport ; Spatial memory ; Synaptic transmission ; α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</subject><ispartof>Communications biology, 2022-06, Vol.5 (1), p.589-589, Article 589</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-92b3f42317341bdd37543c2d87881598fd0c2f8999f6297a4fec189417cea25a3</citedby><cites>FETCH-LOGICAL-c540t-92b3f42317341bdd37543c2d87881598fd0c2f8999f6297a4fec189417cea25a3</cites><orcidid>0000-0003-3463-512X ; 0000-0002-3746-3282 ; 0000-0003-4900-366X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9200775/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2676728090?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35705737$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Muhia, Mary</creatorcontrib><creatorcontrib>YuanXiang, PingAn</creatorcontrib><creatorcontrib>Sedlacik, Jan</creatorcontrib><creatorcontrib>Schwarz, Jürgen R.</creatorcontrib><creatorcontrib>Heisler, Frank F.</creatorcontrib><creatorcontrib>Gromova, Kira V.</creatorcontrib><creatorcontrib>Thies, Edda</creatorcontrib><creatorcontrib>Breiden, Petra</creatorcontrib><creatorcontrib>Pechmann, Yvonne</creatorcontrib><creatorcontrib>Kreutz, Michael R.</creatorcontrib><creatorcontrib>Kneussel, Matthias</creatorcontrib><title>Muskelin regulates actin-dependent synaptic changes and intrinsic brain activity relevant to behavioral and cognitive processes</title><title>Communications biology</title><addtitle>Commun Biol</addtitle><addtitle>Commun Biol</addtitle><description>Muskelin (Mkln1) is implicated in neuronal function, regulating plasma membrane receptor trafficking. However, its influence on intrinsic brain activity and corresponding behavioral processes remains unclear. Here we show that murine
Mkln1
knockout causes non-habituating locomotor activity, increased exploratory drive, and decreased locomotor response to amphetamine. Muskelin deficiency impairs social novelty detection while promoting the retention of spatial reference memory and fear extinction recall. This is strongly mirrored in either weaker or stronger resting-state functional connectivity between critical circuits mediating locomotor exploration and cognition. We show that
Mkln1
deletion alters dendrite branching and spine structure, coinciding with enhanced AMPAR-mediated synaptic transmission but selective impairment in synaptic potentiation maintenance. We identify muskelin at excitatory synapses and highlight its role in regulating dendritic spine actin stability. Our findings point to aberrant spine actin modulation and changes in glutamatergic synaptic function as critical mechanisms that contribute to the neurobehavioral phenotype arising from
Mkln1
ablation.
A murine muskelin knockout induces increased exploratory drive and alters cognition and functional connectivity. These effects correlate with actin-dependent changes in dendritic branching, spine structure, and AMPAR-mediated synaptic transmission.</description><subject>14</subject><subject>14/1</subject><subject>14/63</subject><subject>59/57</subject><subject>631/378/2649</subject><subject>631/378/87</subject><subject>64/60</subject><subject>82</subject><subject>82/80</subject><subject>9/30</subject><subject>9/74</subject><subject>Actin</subject><subject>Amphetamines</subject><subject>Anxiety</subject><subject>Behavior</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical engineering</subject><subject>Cognition & reasoning</subject><subject>Cognitive ability</subject><subject>Dendritic branching</subject><subject>Dendritic spines</subject><subject>Exploratory behavior</subject><subject>Fear conditioning</subject><subject>Functional morphology</subject><subject>Genotype & phenotype</subject><subject>Glutamatergic transmission</subject><subject>Life Sciences</subject><subject>Locomotor activity</subject><subject>Medical research</subject><subject>Membrane trafficking</subject><subject>Memory</subject><subject>Morphology</subject><subject>Neural networks</subject><subject>Neurobiology</subject><subject>Neurosciences</subject><subject>Phenotypes</subject><subject>Potentiation</subject><subject>Protein transport</subject><subject>Spatial memory</subject><subject>Synaptic transmission</subject><subject>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</subject><issn>2399-3642</issn><issn>2399-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk9v1DAQxSMEolXpF-CAInHhEvDfOL4goapApSIucLYce7LrJWsvdrLSnvjqzG5KaTlwsuX5vWfP-FXVS0reUsK7d0UwQnhDGGsIF6Jt6JPqnHGtG94K9vTB_qy6LGVDCKFa65aL59UZl4pIxdV59evLXH7AGGKdYTWPdoJSWzeF2HjYQfQQp7ocot1NwdVubePqCERfhzjlEAue9tmi_Cjah-mAPiPsLcqmVPewtvuQsh1PGpdWMSAG9S4nB6VAeVE9G-xY4PJuvai-f7z-dvW5uf366ebqw23jpCBTo1nPB8E4VVzQ3nuupOCO-U51HZW6GzxxbOiwwaFlWlkxgKOdFlQ5sExaflHdLL4-2Y3Z5bC1-WCSDeZ0kPLK2Iw9jmCYlQqo9C3jUkDLLcdR9q1z4C2V_YBe7xev3dxvwTucEXb4yPRxJYa1WaW90fhlSkk0eHNnkNPPGcpktqE4GEcbIc3FsBYpxTqmEH39D7pJc444qiPVIkQ0QYotlMuplAzD_WMoMce4mCUuBuNiTnExFEWvHrZxL_kTDgT4AhQs4cfnv3f_x_Y3ij7NWw</recordid><startdate>20220615</startdate><enddate>20220615</enddate><creator>Muhia, Mary</creator><creator>YuanXiang, PingAn</creator><creator>Sedlacik, Jan</creator><creator>Schwarz, Jürgen R.</creator><creator>Heisler, Frank F.</creator><creator>Gromova, Kira V.</creator><creator>Thies, Edda</creator><creator>Breiden, Petra</creator><creator>Pechmann, Yvonne</creator><creator>Kreutz, Michael R.</creator><creator>Kneussel, Matthias</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3463-512X</orcidid><orcidid>https://orcid.org/0000-0002-3746-3282</orcidid><orcidid>https://orcid.org/0000-0003-4900-366X</orcidid></search><sort><creationdate>20220615</creationdate><title>Muskelin regulates actin-dependent synaptic changes and intrinsic brain activity relevant to behavioral and cognitive processes</title><author>Muhia, Mary ; YuanXiang, PingAn ; Sedlacik, Jan ; Schwarz, Jürgen R. ; Heisler, Frank F. ; Gromova, Kira V. ; Thies, Edda ; Breiden, Petra ; Pechmann, Yvonne ; Kreutz, Michael R. ; Kneussel, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-92b3f42317341bdd37543c2d87881598fd0c2f8999f6297a4fec189417cea25a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>14</topic><topic>14/1</topic><topic>14/63</topic><topic>59/57</topic><topic>631/378/2649</topic><topic>631/378/87</topic><topic>64/60</topic><topic>82</topic><topic>82/80</topic><topic>9/30</topic><topic>9/74</topic><topic>Actin</topic><topic>Amphetamines</topic><topic>Anxiety</topic><topic>Behavior</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical engineering</topic><topic>Cognition & reasoning</topic><topic>Cognitive ability</topic><topic>Dendritic branching</topic><topic>Dendritic spines</topic><topic>Exploratory behavior</topic><topic>Fear conditioning</topic><topic>Functional morphology</topic><topic>Genotype & phenotype</topic><topic>Glutamatergic transmission</topic><topic>Life Sciences</topic><topic>Locomotor activity</topic><topic>Medical research</topic><topic>Membrane trafficking</topic><topic>Memory</topic><topic>Morphology</topic><topic>Neural networks</topic><topic>Neurobiology</topic><topic>Neurosciences</topic><topic>Phenotypes</topic><topic>Potentiation</topic><topic>Protein transport</topic><topic>Spatial memory</topic><topic>Synaptic transmission</topic><topic>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muhia, Mary</creatorcontrib><creatorcontrib>YuanXiang, PingAn</creatorcontrib><creatorcontrib>Sedlacik, Jan</creatorcontrib><creatorcontrib>Schwarz, Jürgen R.</creatorcontrib><creatorcontrib>Heisler, Frank F.</creatorcontrib><creatorcontrib>Gromova, Kira V.</creatorcontrib><creatorcontrib>Thies, Edda</creatorcontrib><creatorcontrib>Breiden, Petra</creatorcontrib><creatorcontrib>Pechmann, Yvonne</creatorcontrib><creatorcontrib>Kreutz, Michael R.</creatorcontrib><creatorcontrib>Kneussel, Matthias</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Communications biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muhia, Mary</au><au>YuanXiang, PingAn</au><au>Sedlacik, Jan</au><au>Schwarz, Jürgen R.</au><au>Heisler, Frank F.</au><au>Gromova, Kira V.</au><au>Thies, Edda</au><au>Breiden, Petra</au><au>Pechmann, Yvonne</au><au>Kreutz, Michael R.</au><au>Kneussel, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Muskelin regulates actin-dependent synaptic changes and intrinsic brain activity relevant to behavioral and cognitive processes</atitle><jtitle>Communications biology</jtitle><stitle>Commun Biol</stitle><addtitle>Commun Biol</addtitle><date>2022-06-15</date><risdate>2022</risdate><volume>5</volume><issue>1</issue><spage>589</spage><epage>589</epage><pages>589-589</pages><artnum>589</artnum><issn>2399-3642</issn><eissn>2399-3642</eissn><abstract>Muskelin (Mkln1) is implicated in neuronal function, regulating plasma membrane receptor trafficking. However, its influence on intrinsic brain activity and corresponding behavioral processes remains unclear. Here we show that murine
Mkln1
knockout causes non-habituating locomotor activity, increased exploratory drive, and decreased locomotor response to amphetamine. Muskelin deficiency impairs social novelty detection while promoting the retention of spatial reference memory and fear extinction recall. This is strongly mirrored in either weaker or stronger resting-state functional connectivity between critical circuits mediating locomotor exploration and cognition. We show that
Mkln1
deletion alters dendrite branching and spine structure, coinciding with enhanced AMPAR-mediated synaptic transmission but selective impairment in synaptic potentiation maintenance. We identify muskelin at excitatory synapses and highlight its role in regulating dendritic spine actin stability. Our findings point to aberrant spine actin modulation and changes in glutamatergic synaptic function as critical mechanisms that contribute to the neurobehavioral phenotype arising from
Mkln1
ablation.
A murine muskelin knockout induces increased exploratory drive and alters cognition and functional connectivity. These effects correlate with actin-dependent changes in dendritic branching, spine structure, and AMPAR-mediated synaptic transmission.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35705737</pmid><doi>10.1038/s42003-022-03446-1</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3463-512X</orcidid><orcidid>https://orcid.org/0000-0002-3746-3282</orcidid><orcidid>https://orcid.org/0000-0003-4900-366X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2399-3642 |
ispartof | Communications biology, 2022-06, Vol.5 (1), p.589-589, Article 589 |
issn | 2399-3642 2399-3642 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2a57e15d62354e63a3239b6cceda15bf |
source | PubMed Central(OA); ProQuest - Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 14 14/1 14/63 59/57 631/378/2649 631/378/87 64/60 82 82/80 9/30 9/74 Actin Amphetamines Anxiety Behavior Biology Biomedical and Life Sciences Biomedical engineering Cognition & reasoning Cognitive ability Dendritic branching Dendritic spines Exploratory behavior Fear conditioning Functional morphology Genotype & phenotype Glutamatergic transmission Life Sciences Locomotor activity Medical research Membrane trafficking Memory Morphology Neural networks Neurobiology Neurosciences Phenotypes Potentiation Protein transport Spatial memory Synaptic transmission α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors |
title | Muskelin regulates actin-dependent synaptic changes and intrinsic brain activity relevant to behavioral and cognitive processes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A52%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Muskelin%20regulates%20actin-dependent%20synaptic%20changes%20and%20intrinsic%20brain%20activity%20relevant%20to%20behavioral%20and%20cognitive%20processes&rft.jtitle=Communications%20biology&rft.au=Muhia,%20Mary&rft.date=2022-06-15&rft.volume=5&rft.issue=1&rft.spage=589&rft.epage=589&rft.pages=589-589&rft.artnum=589&rft.issn=2399-3642&rft.eissn=2399-3642&rft_id=info:doi/10.1038/s42003-022-03446-1&rft_dat=%3Cproquest_doaj_%3E2677572827%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-92b3f42317341bdd37543c2d87881598fd0c2f8999f6297a4fec189417cea25a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2676728090&rft_id=info:pmid/35705737&rfr_iscdi=true |