Loading…

A Novel Microfluidic Strategy for Efficient Exosome Separation via Thermally Oxidized Non-Uniform Deterministic Lateral Displacement (DLD) Arrays and Dielectrophoresis (DEP) Synergy

Exosomes, with diameters ranging from 30 to 150 nm, are saucer-shaped extracellular vesicles (EVs) secreted by various type of human cells. They are present in virtually all bodily fluids. Owing to their abundant nucleic acid and protein content, exosomes have emerged as promising biomarkers for non...

Full description

Saved in:
Bibliographic Details
Published in:Biosensors (Basel) 2024-04, Vol.14 (4), p.174
Main Authors: Wang, Dayin, Yang, Shijia, Wang, Ning, Guo, Han, Feng, Shilun, Luo, Yuan, Zhao, Jianlong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c423t-bc6c5194092ce03c6d0c8180786d07544fe72e1d8eda402056653223cf6785233
cites cdi_FETCH-LOGICAL-c423t-bc6c5194092ce03c6d0c8180786d07544fe72e1d8eda402056653223cf6785233
container_end_page
container_issue 4
container_start_page 174
container_title Biosensors (Basel)
container_volume 14
creator Wang, Dayin
Yang, Shijia
Wang, Ning
Guo, Han
Feng, Shilun
Luo, Yuan
Zhao, Jianlong
description Exosomes, with diameters ranging from 30 to 150 nm, are saucer-shaped extracellular vesicles (EVs) secreted by various type of human cells. They are present in virtually all bodily fluids. Owing to their abundant nucleic acid and protein content, exosomes have emerged as promising biomarkers for noninvasive molecular diagnostics. However, the need for exosome separation purification presents tremendous technical challenges due to their minuscule size. In recent years, microfluidic technology has garnered substantial interest as a promising alternative capable of excellent separation performance, reduced reagent consumption, and lower overall device and operation costs. In this context, we hereby propose a novel microfluidic strategy based on thermally oxidized deterministic lateral displacement (DLD) arrays with tapered shapes to enhance separation performance. We have achieved more than 90% purity in both polystyrene nanoparticle and exosome experiments. The use of thermal oxidation also significantly reduces fabrication complexity by avoiding the use of high-precision lithography. Furthermore, in a simulation model, we attempt to integrate the use of dielectrophoresis (DEP) to overcome the size-based nature of DLD and distinguish particles that are close in size but differ in biochemical compositions (e.g., lipoproteins, exomeres, retroviruses). We believe the proposed strategy heralds a versatile and innovative platform poised to enhance exosome analysis across a spectrum of biochemical applications.
doi_str_mv 10.3390/bios14040174
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2a6040b0553f472c88da14136884743f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2a6040b0553f472c88da14136884743f</doaj_id><sourcerecordid>3046808355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-bc6c5194092ce03c6d0c8180786d07544fe72e1d8eda402056653223cf6785233</originalsourceid><addsrcrecordid>eNpdkk1vEzEQQC0EolXojTOyxKWVWPDX2t5j1ASoFChS2vPK8c6mjrzrYO9WXf4X_w-HlKrCF1ueN88ezSD0lpKPnFfk08aFRAURhCrxAp0yoqpCciVePjufoLOUdiQvJVTF1Wt0wrWUikp1in7P8fdwDx5_czaG1o-ucRavh2gG2E64DREv29ZZB_2Alw8hhQ7wGvYmAy70-N4ZfHMHsTPeT_j6Iaf_giY7--K2dzm9wwsYctz1Lg1ZvcriaDxeuLT3xkJ3EJ8vVosLPI_RTAmbvslR8GCHGPZ3IUJyKSPLHxd4PfUQt9Mb9Ko1PsHZ4z5Dt5-XN5dfi9X1l6vL-aqwgvGh2FhpS1oJUjELhFvZEKupJkrnkyqFaEExoI2GxgjCSCllyRnjtpVKl4zzGbo6eptgdvU-us7EqQ7G1X8vQtzWJuaqPNTMyNyGDSlL3grFrNaNoYJyqbVQgrfZdX507WP4OUIa6s4lC96bHsKYak4O3dElZRl9_x-6C2Psc6UHSmqieX5mhj4cqdy4lCK0Tx-kpD5MR_18OjL-7lE6bjponuB_s8D_ADYJtIU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046808355</pqid></control><display><type>article</type><title>A Novel Microfluidic Strategy for Efficient Exosome Separation via Thermally Oxidized Non-Uniform Deterministic Lateral Displacement (DLD) Arrays and Dielectrophoresis (DEP) Synergy</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Wang, Dayin ; Yang, Shijia ; Wang, Ning ; Guo, Han ; Feng, Shilun ; Luo, Yuan ; Zhao, Jianlong</creator><creatorcontrib>Wang, Dayin ; Yang, Shijia ; Wang, Ning ; Guo, Han ; Feng, Shilun ; Luo, Yuan ; Zhao, Jianlong</creatorcontrib><description>Exosomes, with diameters ranging from 30 to 150 nm, are saucer-shaped extracellular vesicles (EVs) secreted by various type of human cells. They are present in virtually all bodily fluids. Owing to their abundant nucleic acid and protein content, exosomes have emerged as promising biomarkers for noninvasive molecular diagnostics. However, the need for exosome separation purification presents tremendous technical challenges due to their minuscule size. In recent years, microfluidic technology has garnered substantial interest as a promising alternative capable of excellent separation performance, reduced reagent consumption, and lower overall device and operation costs. In this context, we hereby propose a novel microfluidic strategy based on thermally oxidized deterministic lateral displacement (DLD) arrays with tapered shapes to enhance separation performance. We have achieved more than 90% purity in both polystyrene nanoparticle and exosome experiments. The use of thermal oxidation also significantly reduces fabrication complexity by avoiding the use of high-precision lithography. Furthermore, in a simulation model, we attempt to integrate the use of dielectrophoresis (DEP) to overcome the size-based nature of DLD and distinguish particles that are close in size but differ in biochemical compositions (e.g., lipoproteins, exomeres, retroviruses). We believe the proposed strategy heralds a versatile and innovative platform poised to enhance exosome analysis across a spectrum of biochemical applications.</description><identifier>ISSN: 2079-6374</identifier><identifier>EISSN: 2079-6374</identifier><identifier>DOI: 10.3390/bios14040174</identifier><identifier>PMID: 38667167</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Arrays ; Biomarkers ; Body fluids ; deterministic lateral displacement (DLD) ; Dielectric properties ; Dielectrophoresis ; dielectrophoresis (DEP) ; Electric fields ; Electrophoresis ; Exosomes ; Extracellular vesicles ; Fabrication ; Humans ; Lateral displacement ; Lipoproteins ; Microfluidic Analytical Techniques ; microfluidic separation ; Microfluidics ; Nanoparticles ; Nanoparticles - chemistry ; Nucleic acids ; Oxidation ; Oxidation-Reduction ; Polystyrene ; Polystyrene resins ; Reagents ; Reynolds number ; Separation ; thermal oxidation ; Viscoelasticity</subject><ispartof>Biosensors (Basel), 2024-04, Vol.14 (4), p.174</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-bc6c5194092ce03c6d0c8180786d07544fe72e1d8eda402056653223cf6785233</citedby><cites>FETCH-LOGICAL-c423t-bc6c5194092ce03c6d0c8180786d07544fe72e1d8eda402056653223cf6785233</cites><orcidid>0009-0002-0906-5698 ; 0000-0002-3995-3015 ; 0000-0002-2560-2417 ; 0000-0003-3153-7495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3046808355/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3046808355?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38667167$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Dayin</creatorcontrib><creatorcontrib>Yang, Shijia</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Guo, Han</creatorcontrib><creatorcontrib>Feng, Shilun</creatorcontrib><creatorcontrib>Luo, Yuan</creatorcontrib><creatorcontrib>Zhao, Jianlong</creatorcontrib><title>A Novel Microfluidic Strategy for Efficient Exosome Separation via Thermally Oxidized Non-Uniform Deterministic Lateral Displacement (DLD) Arrays and Dielectrophoresis (DEP) Synergy</title><title>Biosensors (Basel)</title><addtitle>Biosensors (Basel)</addtitle><description>Exosomes, with diameters ranging from 30 to 150 nm, are saucer-shaped extracellular vesicles (EVs) secreted by various type of human cells. They are present in virtually all bodily fluids. Owing to their abundant nucleic acid and protein content, exosomes have emerged as promising biomarkers for noninvasive molecular diagnostics. However, the need for exosome separation purification presents tremendous technical challenges due to their minuscule size. In recent years, microfluidic technology has garnered substantial interest as a promising alternative capable of excellent separation performance, reduced reagent consumption, and lower overall device and operation costs. In this context, we hereby propose a novel microfluidic strategy based on thermally oxidized deterministic lateral displacement (DLD) arrays with tapered shapes to enhance separation performance. We have achieved more than 90% purity in both polystyrene nanoparticle and exosome experiments. The use of thermal oxidation also significantly reduces fabrication complexity by avoiding the use of high-precision lithography. Furthermore, in a simulation model, we attempt to integrate the use of dielectrophoresis (DEP) to overcome the size-based nature of DLD and distinguish particles that are close in size but differ in biochemical compositions (e.g., lipoproteins, exomeres, retroviruses). We believe the proposed strategy heralds a versatile and innovative platform poised to enhance exosome analysis across a spectrum of biochemical applications.</description><subject>Arrays</subject><subject>Biomarkers</subject><subject>Body fluids</subject><subject>deterministic lateral displacement (DLD)</subject><subject>Dielectric properties</subject><subject>Dielectrophoresis</subject><subject>dielectrophoresis (DEP)</subject><subject>Electric fields</subject><subject>Electrophoresis</subject><subject>Exosomes</subject><subject>Extracellular vesicles</subject><subject>Fabrication</subject><subject>Humans</subject><subject>Lateral displacement</subject><subject>Lipoproteins</subject><subject>Microfluidic Analytical Techniques</subject><subject>microfluidic separation</subject><subject>Microfluidics</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Nucleic acids</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Polystyrene</subject><subject>Polystyrene resins</subject><subject>Reagents</subject><subject>Reynolds number</subject><subject>Separation</subject><subject>thermal oxidation</subject><subject>Viscoelasticity</subject><issn>2079-6374</issn><issn>2079-6374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1vEzEQQC0EolXojTOyxKWVWPDX2t5j1ASoFChS2vPK8c6mjrzrYO9WXf4X_w-HlKrCF1ueN88ezSD0lpKPnFfk08aFRAURhCrxAp0yoqpCciVePjufoLOUdiQvJVTF1Wt0wrWUikp1in7P8fdwDx5_czaG1o-ucRavh2gG2E64DREv29ZZB_2Alw8hhQ7wGvYmAy70-N4ZfHMHsTPeT_j6Iaf_giY7--K2dzm9wwsYctz1Lg1ZvcriaDxeuLT3xkJ3EJ8vVosLPI_RTAmbvslR8GCHGPZ3IUJyKSPLHxd4PfUQt9Mb9Ko1PsHZ4z5Dt5-XN5dfi9X1l6vL-aqwgvGh2FhpS1oJUjELhFvZEKupJkrnkyqFaEExoI2GxgjCSCllyRnjtpVKl4zzGbo6eptgdvU-us7EqQ7G1X8vQtzWJuaqPNTMyNyGDSlL3grFrNaNoYJyqbVQgrfZdX507WP4OUIa6s4lC96bHsKYak4O3dElZRl9_x-6C2Psc6UHSmqieX5mhj4cqdy4lCK0Tx-kpD5MR_18OjL-7lE6bjponuB_s8D_ADYJtIU</recordid><startdate>20240404</startdate><enddate>20240404</enddate><creator>Wang, Dayin</creator><creator>Yang, Shijia</creator><creator>Wang, Ning</creator><creator>Guo, Han</creator><creator>Feng, Shilun</creator><creator>Luo, Yuan</creator><creator>Zhao, Jianlong</creator><general>MDPI AG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0002-0906-5698</orcidid><orcidid>https://orcid.org/0000-0002-3995-3015</orcidid><orcidid>https://orcid.org/0000-0002-2560-2417</orcidid><orcidid>https://orcid.org/0000-0003-3153-7495</orcidid></search><sort><creationdate>20240404</creationdate><title>A Novel Microfluidic Strategy for Efficient Exosome Separation via Thermally Oxidized Non-Uniform Deterministic Lateral Displacement (DLD) Arrays and Dielectrophoresis (DEP) Synergy</title><author>Wang, Dayin ; Yang, Shijia ; Wang, Ning ; Guo, Han ; Feng, Shilun ; Luo, Yuan ; Zhao, Jianlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-bc6c5194092ce03c6d0c8180786d07544fe72e1d8eda402056653223cf6785233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arrays</topic><topic>Biomarkers</topic><topic>Body fluids</topic><topic>deterministic lateral displacement (DLD)</topic><topic>Dielectric properties</topic><topic>Dielectrophoresis</topic><topic>dielectrophoresis (DEP)</topic><topic>Electric fields</topic><topic>Electrophoresis</topic><topic>Exosomes</topic><topic>Extracellular vesicles</topic><topic>Fabrication</topic><topic>Humans</topic><topic>Lateral displacement</topic><topic>Lipoproteins</topic><topic>Microfluidic Analytical Techniques</topic><topic>microfluidic separation</topic><topic>Microfluidics</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Nucleic acids</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Polystyrene</topic><topic>Polystyrene resins</topic><topic>Reagents</topic><topic>Reynolds number</topic><topic>Separation</topic><topic>thermal oxidation</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Dayin</creatorcontrib><creatorcontrib>Yang, Shijia</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Guo, Han</creatorcontrib><creatorcontrib>Feng, Shilun</creatorcontrib><creatorcontrib>Luo, Yuan</creatorcontrib><creatorcontrib>Zhao, Jianlong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Biosensors (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Dayin</au><au>Yang, Shijia</au><au>Wang, Ning</au><au>Guo, Han</au><au>Feng, Shilun</au><au>Luo, Yuan</au><au>Zhao, Jianlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Microfluidic Strategy for Efficient Exosome Separation via Thermally Oxidized Non-Uniform Deterministic Lateral Displacement (DLD) Arrays and Dielectrophoresis (DEP) Synergy</atitle><jtitle>Biosensors (Basel)</jtitle><addtitle>Biosensors (Basel)</addtitle><date>2024-04-04</date><risdate>2024</risdate><volume>14</volume><issue>4</issue><spage>174</spage><pages>174-</pages><issn>2079-6374</issn><eissn>2079-6374</eissn><abstract>Exosomes, with diameters ranging from 30 to 150 nm, are saucer-shaped extracellular vesicles (EVs) secreted by various type of human cells. They are present in virtually all bodily fluids. Owing to their abundant nucleic acid and protein content, exosomes have emerged as promising biomarkers for noninvasive molecular diagnostics. However, the need for exosome separation purification presents tremendous technical challenges due to their minuscule size. In recent years, microfluidic technology has garnered substantial interest as a promising alternative capable of excellent separation performance, reduced reagent consumption, and lower overall device and operation costs. In this context, we hereby propose a novel microfluidic strategy based on thermally oxidized deterministic lateral displacement (DLD) arrays with tapered shapes to enhance separation performance. We have achieved more than 90% purity in both polystyrene nanoparticle and exosome experiments. The use of thermal oxidation also significantly reduces fabrication complexity by avoiding the use of high-precision lithography. Furthermore, in a simulation model, we attempt to integrate the use of dielectrophoresis (DEP) to overcome the size-based nature of DLD and distinguish particles that are close in size but differ in biochemical compositions (e.g., lipoproteins, exomeres, retroviruses). We believe the proposed strategy heralds a versatile and innovative platform poised to enhance exosome analysis across a spectrum of biochemical applications.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38667167</pmid><doi>10.3390/bios14040174</doi><orcidid>https://orcid.org/0009-0002-0906-5698</orcidid><orcidid>https://orcid.org/0000-0002-3995-3015</orcidid><orcidid>https://orcid.org/0000-0002-2560-2417</orcidid><orcidid>https://orcid.org/0000-0003-3153-7495</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-6374
ispartof Biosensors (Basel), 2024-04, Vol.14 (4), p.174
issn 2079-6374
2079-6374
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2a6040b0553f472c88da14136884743f
source Publicly Available Content Database; PubMed Central
subjects Arrays
Biomarkers
Body fluids
deterministic lateral displacement (DLD)
Dielectric properties
Dielectrophoresis
dielectrophoresis (DEP)
Electric fields
Electrophoresis
Exosomes
Extracellular vesicles
Fabrication
Humans
Lateral displacement
Lipoproteins
Microfluidic Analytical Techniques
microfluidic separation
Microfluidics
Nanoparticles
Nanoparticles - chemistry
Nucleic acids
Oxidation
Oxidation-Reduction
Polystyrene
Polystyrene resins
Reagents
Reynolds number
Separation
thermal oxidation
Viscoelasticity
title A Novel Microfluidic Strategy for Efficient Exosome Separation via Thermally Oxidized Non-Uniform Deterministic Lateral Displacement (DLD) Arrays and Dielectrophoresis (DEP) Synergy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A40%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Microfluidic%20Strategy%20for%20Efficient%20Exosome%20Separation%20via%20Thermally%20Oxidized%20Non-Uniform%20Deterministic%20Lateral%20Displacement%20(DLD)%20Arrays%20and%20Dielectrophoresis%20(DEP)%20Synergy&rft.jtitle=Biosensors%20(Basel)&rft.au=Wang,%20Dayin&rft.date=2024-04-04&rft.volume=14&rft.issue=4&rft.spage=174&rft.pages=174-&rft.issn=2079-6374&rft.eissn=2079-6374&rft_id=info:doi/10.3390/bios14040174&rft_dat=%3Cproquest_doaj_%3E3046808355%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-bc6c5194092ce03c6d0c8180786d07544fe72e1d8eda402056653223cf6785233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3046808355&rft_id=info:pmid/38667167&rfr_iscdi=true