Loading…

Anti-biofilm properties of laser-synthesized, ultrapure silver–gold-alloy nanoparticles against Staphylococcus aureus

Staphylococcus aureus biofilm-associated infections are a common complication in modern medicine. Due to inherent resilience of biofilms to antibiotics and the rising number of antibiotic-resistant bacterial strains, new treatment options are required. For this purpose, ultrapure, spherical silver–g...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2024-02, Vol.14 (1), p.3405-3405, Article 3405
Main Authors: Heine, Nils, Doll-Nikutta, Katharina, Stein, Frederic, Jakobi, Jurij, Ingendoh-Tsakmakidis, Alexandra, Rehbock, Christoph, Winkel, Andreas, Barcikowski, Stephan, Stiesch, Meike
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Staphylococcus aureus biofilm-associated infections are a common complication in modern medicine. Due to inherent resilience of biofilms to antibiotics and the rising number of antibiotic-resistant bacterial strains, new treatment options are required. For this purpose, ultrapure, spherical silver–gold-alloy nanoparticles with homogenous elemental distribution were synthesized by laser ablation in liquids and analyzed for their antibacterial activity on different stages of S. aureus biofilm formation as well as for different viability parameters. First, the effect of nanoparticles against planktonic bacteria was tested with metabolic activity measurements. Next, nanoparticles were incubated with differently matured S. aureus biofilms, which were then analyzed by metabolic activity measurements and three dimensional live/dead fluorescent staining to determine biofilm volume and membrane integrity. It could be shown that AgAu NPs exhibit antibacterial properties against planktonic bacteria but also against early-stage and even mature biofilms, with a complete diffusion through the biofilm matrix. Furthermore, AgAu NPs primarily targeted metabolic activity, to a smaller extend membrane integrity, but not the biofilm volume. Additional molecular analyses using qRT-PCR confirmed the influence on different metabolic pathways, like glycolysis, stress response and biofilm formation. As this shows clear similarities to the mechanism of pure silver ions, the results strengthen silver ions to be the major antibacterial agent of the synthesized nanoparticles. In summary, the results of this study provide initial evidence of promising anti-biofilm characteristics of silver–gold-alloy nanoparticles and support the importance of further translation-oriented analyses in the future.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-53782-x