Loading…

In-Home Cardiovascular Monitoring System for Heart Failure: Comparative Study

There is a pressing need to reduce the hospitalization rate of heart failure patients to limit rising health care costs and improve outcomes. Tracking physiologic changes to detect early deterioration in the home has the potential to reduce hospitalization rates through early intervention. However,...

Full description

Saved in:
Bibliographic Details
Published in:JMIR mHealth and uHealth 2019-01, Vol.7 (1), p.e12419-e12419
Main Authors: Conn, Nicholas J, Schwarz, Karl Q, Borkholder, David A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:There is a pressing need to reduce the hospitalization rate of heart failure patients to limit rising health care costs and improve outcomes. Tracking physiologic changes to detect early deterioration in the home has the potential to reduce hospitalization rates through early intervention. However, classical approaches to in-home monitoring have had limited success, with patient adherence cited as a major barrier. This work presents a toilet seat-based cardiovascular monitoring system that has the potential to address low patient adherence as it does not require any change in habit or behavior. The objective of this work was to demonstrate that a toilet seat-based cardiovascular monitoring system with an integrated electrocardiogram, ballistocardiogram, and photoplethysmogram is capable of clinical-grade measurements of systolic and diastolic blood pressure, stroke volume, and peripheral blood oxygenation. The toilet seat-based estimates of blood pressure and peripheral blood oxygenation were compared to a hospital-grade vital signs monitor for 18 subjects over an 8-week period. The estimated stroke volume was validated on 38 normative subjects and 111 subjects undergoing a standard echocardiogram at a hospital clinic for any underlying condition, including heart failure. Clinical grade accuracy was achieved for all of the seat measurements when compared to their respective gold standards. The accuracy of diastolic blood pressure and systolic blood pressure is 1.2 (SD 6.0) mm Hg (N=112) and -2.7 (SD 6.6) mm Hg (N=89), respectively. Stroke volume has an accuracy of -2.5 (SD 15.5) mL (N=149) compared to an echocardiogram gold standard. Peripheral blood oxygenation had an RMS error of 2.3% (N=91). A toilet seat-based cardiovascular monitoring system has been successfully demonstrated with blood pressure, stroke volume, and blood oxygenation accuracy consistent with gold standard measures. This system will be uniquely positioned to capture trend data in the home that has been previously unattainable. Demonstration of the clinical benefit of the technology requires additional algorithm development and future clinical trials, including those targeting a reduction in heart failure hospitalizations.
ISSN:2291-5222
2291-5222
DOI:10.2196/12419