Loading…

Towards Binder Jetting and Sintering of AZ91 Magnesium Powder

The inherent properties of magnesium (Mg) make it one of the most challenging metals to process with additive manufacturing (AM), especially with fusion-based techniques. Binder jetting is a two-step AM method in which green Mg objects print near room temperature, then the as-printed green object si...

Full description

Saved in:
Bibliographic Details
Published in:Crystals (Basel) 2023-02, Vol.13 (2), p.286
Main Authors: Salehi, Mojtaba, Kuah, Kai Xiang, Ho, Jia Hern, Zhang, Su Xia, Seet, Hang Li, Nai, Mui Ling Sharon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The inherent properties of magnesium (Mg) make it one of the most challenging metals to process with additive manufacturing (AM), especially with fusion-based techniques. Binder jetting is a two-step AM method in which green Mg objects print near room temperature, then the as-printed green object sinters at a high temperature. Thus far, a limited number of studies have been reported on the binder jetting of Mg powder. This study aimed to push the knowledge base of binder jetting and sintering for AZ91D powder. To this end, the principle of capillary-mediated binderless printing was used to determine the ink saturation level (SL) required for the binder jetting of a green AZ91 object. The effects of various SLs on forming interparticle bridges between AZ91 powder particles and the dimensional accuracy of the resultant as-printed objects were investigated. Green AZ91 objects sintered at different temperatures ranging from 530 °C to 575 °C showed a marginal increment in density with an increase in sintering temperature (i.e., 1.5% to 5.1%). The root cause of such a low sintering densification rate in the presence of up to 54.5 vol. % liquid phase was discussed in the context of the powder packing density of as-printed objects and swelling occurring at sintering temperatures ≥ 45 °C. Overall, this work demonstrates the great potential of binderless printing for AM of Mg powder and the need for pushing sintering boundaries for further densification of as-printed Mg components.
ISSN:2073-4352
2073-4352
DOI:10.3390/cryst13020286