Loading…

Genome-Wide Analysis of Fruit Color and Carotenoid Content in Capsicum Core Collection

This study investigated carotenoid content and fruit color variation in 306 pepper accessions from diverse species. Red-fruited accessions were predominant (245 accessions), followed by orange (35) and yellow (20). Carotenoid profiles varied significantly across accessions, with capsanthin showing t...

Full description

Saved in:
Bibliographic Details
Published in:Plants (Basel) 2024-09, Vol.13 (18), p.2562
Main Authors: Ro, Nayoung, Oh, Hyeonseok, Ko, Ho-Cheol, Yi, Jungyoon, Na, Young-Wang, Haile, Mesfin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigated carotenoid content and fruit color variation in 306 pepper accessions from diverse species. Red-fruited accessions were predominant (245 accessions), followed by orange (35) and yellow (20). Carotenoid profiles varied significantly across accessions, with capsanthin showing the highest mean concentration (239.12 μg/g), followed by β-cryptoxanthin (63.70 μg/g) and zeaxanthin (63.25 μg/g). Total carotenoid content ranged from 7.09 to 2566.67 μg/g, emphasizing the diversity within the dataset. Correlation analysis revealed complex relationships between carotenoids, with strong positive correlations observed between total carotenoids and capsanthin (r = 0.94 ***), β-cryptoxanthin (r = 0.87 ***), and zeaxanthin (r = 0.84 ***). Principal component analysis (PCA) identified two distinct carotenoid groups, accounting for 67.6% of the total variance. A genome-wide association study (GWAS) identified 91 significant single nucleotide polymorphisms (SNPs) associated with fruit color (15 SNPs) and carotenoid content (76 SNPs). These SNPs were distributed across all chromosomes, with varying numbers on each. Among individual carotenoids, α-carotene was associated with 28 SNPs, while other carotenoids showed different numbers of associated SNPs. Candidate genes encoding diverse proteins were identified near significant SNPs, potentially contributing to fruit color variation and carotenoid accumulation. These included pentatricopeptide repeat-containing proteins, mitochondrial proton/calcium exchangers, E3 ubiquitin-protein ligase SINAT2, histone-lysine N-methyltransferase, sucrose synthase, and various enzymes involved in metabolic processes. Seven SNPs exhibited pleiotropic effects on multiple carotenoids, particularly β-cryptoxanthin and capsanthin. The findings of this study provide insights into the genetic architecture of carotenoid biosynthesis and fruit color in peppers, offering valuable resources for targeted breeding programs aimed at enhancing the nutritional and sensory attributes of pepper varieties.
ISSN:2223-7747
2223-7747
DOI:10.3390/plants13182562