Loading…
WMR-DepthwiseNet: A Wavelet Multi-Resolution Depthwise Separable Convolutional Neural Network for COVID-19 Diagnosis
Timely discovery of COVID-19 could aid in formulating a suitable treatment plan for disease mitigation and containment decisions. The widely used COVID-19 test necessitates a regular method and has a low sensitivity value. Computed tomography and chest X-ray are also other methods utilized by numero...
Saved in:
Published in: | Diagnostics (Basel) 2022-03, Vol.12 (3), p.765 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c499t-831c65e9114aea460c52e2da9e48880f5288a4d335c94200b226f36de43a511f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c499t-831c65e9114aea460c52e2da9e48880f5288a4d335c94200b226f36de43a511f3 |
container_end_page | |
container_issue | 3 |
container_start_page | 765 |
container_title | Diagnostics (Basel) |
container_volume | 12 |
creator | Monday, Happy Nkanta Li, Jianping Nneji, Grace Ugochi Hossin, Md Altab Nahar, Saifun Jackson, Jehoiada Chikwendu, Ijeoma Amuche |
description | Timely discovery of COVID-19 could aid in formulating a suitable treatment plan for disease mitigation and containment decisions. The widely used COVID-19 test necessitates a regular method and has a low sensitivity value. Computed tomography and chest X-ray are also other methods utilized by numerous studies for detecting COVID-19. In this article, we propose a CNN called depthwise separable convolution network with wavelet multiresolution analysis module (WMR-DepthwiseNet) that is robust to automatically learn details from both spatialwise and channelwise for COVID-19 identification with a limited radiograph dataset, which is critical due to the rapid growth of COVID-19. This model utilizes an effective strategy to prevent loss of spatial details, which is a prevalent issue in traditional convolutional neural network, and second, the depthwise separable connectivity framework ensures reusability of feature maps by directly connecting previous layer to all subsequent layers for extracting feature representations from few datasets. We evaluate the proposed model by utilizing a public domain dataset of COVID-19 confirmed case and other pneumonia illness. The proposed method achieves 98.63% accuracy, 98.46% sensitivity, 97.99% specificity, and 98.69% precision on chest X-ray dataset, whereas using the computed tomography dataset, the model achieves 96.83% accuracy, 97.78% sensitivity, 96.22% specificity, and 97.02% precision. According to the results of our experiments, our model achieves up-to-date accuracy with only a few training cases available, which is useful for COVID-19 screening. This latest paradigm is expected to contribute significantly in the battle against COVID-19 and other life-threatening diseases. |
doi_str_mv | 10.3390/diagnostics12030765 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2acfd95340234774866fbbae22e51abc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2acfd95340234774866fbbae22e51abc</doaj_id><sourcerecordid>2644013245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-831c65e9114aea460c52e2da9e48880f5288a4d335c94200b226f36de43a511f3</originalsourceid><addsrcrecordid>eNptkttqGzEQhpfS0oQ0T1Aogt70Zhsdd6VeFILdNoYcID3kUmi1s47c9cqRtA59-6q2a5IQ3YyY-ebnn2GK4i3BHxlT-KR1Zj74mJyNhGKG60q8KA4prkXJOZEvH_wPiuMYFzg_RZik4nVxwASjkhF5WKSbi-tyCqt0e-8iXEL6hE7RjVlDDwldjH1y5TVE34_J-QHtQfQdViaYpgc08cN6Vzc9uoQxbEK69-E36nxAk6tfs2lJFJpuPbv4pnjVmT7C8S4eFT-_fvkxOSvPr77NJqfnpeVKpTI7tJUARQg3YHiFraBAW6OASylxJ6iUhreMCas4xbihtOpY1QJnRhDSsaNittVtvVnoVXBLE_5ob5zeJHyYaxPyCnvQ1NiuVYJxTBmvay6rqmsaA5SCIKaxWevzVms1NktoLQwpD_pI9HFlcLd67tdaKl4LWmWBDzuB4O9GiEkvXbTQ92YAP0ZNK84xYZSLjL5_gi78GPJ6NxTluJYEZ4ptKRt8jAG6vRmC9b8j0c8cSe5693COfc__k2B_ASfUusc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642407810</pqid></control><display><type>article</type><title>WMR-DepthwiseNet: A Wavelet Multi-Resolution Depthwise Separable Convolutional Neural Network for COVID-19 Diagnosis</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Coronavirus Research Database</source><creator>Monday, Happy Nkanta ; Li, Jianping ; Nneji, Grace Ugochi ; Hossin, Md Altab ; Nahar, Saifun ; Jackson, Jehoiada ; Chikwendu, Ijeoma Amuche</creator><creatorcontrib>Monday, Happy Nkanta ; Li, Jianping ; Nneji, Grace Ugochi ; Hossin, Md Altab ; Nahar, Saifun ; Jackson, Jehoiada ; Chikwendu, Ijeoma Amuche</creatorcontrib><description>Timely discovery of COVID-19 could aid in formulating a suitable treatment plan for disease mitigation and containment decisions. The widely used COVID-19 test necessitates a regular method and has a low sensitivity value. Computed tomography and chest X-ray are also other methods utilized by numerous studies for detecting COVID-19. In this article, we propose a CNN called depthwise separable convolution network with wavelet multiresolution analysis module (WMR-DepthwiseNet) that is robust to automatically learn details from both spatialwise and channelwise for COVID-19 identification with a limited radiograph dataset, which is critical due to the rapid growth of COVID-19. This model utilizes an effective strategy to prevent loss of spatial details, which is a prevalent issue in traditional convolutional neural network, and second, the depthwise separable connectivity framework ensures reusability of feature maps by directly connecting previous layer to all subsequent layers for extracting feature representations from few datasets. We evaluate the proposed model by utilizing a public domain dataset of COVID-19 confirmed case and other pneumonia illness. The proposed method achieves 98.63% accuracy, 98.46% sensitivity, 97.99% specificity, and 98.69% precision on chest X-ray dataset, whereas using the computed tomography dataset, the model achieves 96.83% accuracy, 97.78% sensitivity, 96.22% specificity, and 97.02% precision. According to the results of our experiments, our model achieves up-to-date accuracy with only a few training cases available, which is useful for COVID-19 screening. This latest paradigm is expected to contribute significantly in the battle against COVID-19 and other life-threatening diseases.</description><identifier>ISSN: 2075-4418</identifier><identifier>EISSN: 2075-4418</identifier><identifier>DOI: 10.3390/diagnostics12030765</identifier><identifier>PMID: 35328318</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Chest X-ray (CXR) ; Computed Tomography (CT) ; convolutional neural network ; Coronaviruses ; COVID-19 ; Datasets ; depthwise separable convolution ; Medical imaging ; multiresolution analysis ; Neural networks ; wavelet</subject><ispartof>Diagnostics (Basel), 2022-03, Vol.12 (3), p.765</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-831c65e9114aea460c52e2da9e48880f5288a4d335c94200b226f36de43a511f3</citedby><cites>FETCH-LOGICAL-c499t-831c65e9114aea460c52e2da9e48880f5288a4d335c94200b226f36de43a511f3</cites><orcidid>0000-0002-7180-0430 ; 0000-0003-2192-1450 ; 0000-0002-7946-0557 ; 0000-0002-2016-7639 ; 0000-0002-4700-9083 ; 0000-0003-0730-2098 ; 0000-0001-9277-2312</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2642407810/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2642407810?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35328318$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Monday, Happy Nkanta</creatorcontrib><creatorcontrib>Li, Jianping</creatorcontrib><creatorcontrib>Nneji, Grace Ugochi</creatorcontrib><creatorcontrib>Hossin, Md Altab</creatorcontrib><creatorcontrib>Nahar, Saifun</creatorcontrib><creatorcontrib>Jackson, Jehoiada</creatorcontrib><creatorcontrib>Chikwendu, Ijeoma Amuche</creatorcontrib><title>WMR-DepthwiseNet: A Wavelet Multi-Resolution Depthwise Separable Convolutional Neural Network for COVID-19 Diagnosis</title><title>Diagnostics (Basel)</title><addtitle>Diagnostics (Basel)</addtitle><description>Timely discovery of COVID-19 could aid in formulating a suitable treatment plan for disease mitigation and containment decisions. The widely used COVID-19 test necessitates a regular method and has a low sensitivity value. Computed tomography and chest X-ray are also other methods utilized by numerous studies for detecting COVID-19. In this article, we propose a CNN called depthwise separable convolution network with wavelet multiresolution analysis module (WMR-DepthwiseNet) that is robust to automatically learn details from both spatialwise and channelwise for COVID-19 identification with a limited radiograph dataset, which is critical due to the rapid growth of COVID-19. This model utilizes an effective strategy to prevent loss of spatial details, which is a prevalent issue in traditional convolutional neural network, and second, the depthwise separable connectivity framework ensures reusability of feature maps by directly connecting previous layer to all subsequent layers for extracting feature representations from few datasets. We evaluate the proposed model by utilizing a public domain dataset of COVID-19 confirmed case and other pneumonia illness. The proposed method achieves 98.63% accuracy, 98.46% sensitivity, 97.99% specificity, and 98.69% precision on chest X-ray dataset, whereas using the computed tomography dataset, the model achieves 96.83% accuracy, 97.78% sensitivity, 96.22% specificity, and 97.02% precision. According to the results of our experiments, our model achieves up-to-date accuracy with only a few training cases available, which is useful for COVID-19 screening. This latest paradigm is expected to contribute significantly in the battle against COVID-19 and other life-threatening diseases.</description><subject>Chest X-ray (CXR)</subject><subject>Computed Tomography (CT)</subject><subject>convolutional neural network</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Datasets</subject><subject>depthwise separable convolution</subject><subject>Medical imaging</subject><subject>multiresolution analysis</subject><subject>Neural networks</subject><subject>wavelet</subject><issn>2075-4418</issn><issn>2075-4418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkttqGzEQhpfS0oQ0T1Aogt70Zhsdd6VeFILdNoYcID3kUmi1s47c9cqRtA59-6q2a5IQ3YyY-ebnn2GK4i3BHxlT-KR1Zj74mJyNhGKG60q8KA4prkXJOZEvH_wPiuMYFzg_RZik4nVxwASjkhF5WKSbi-tyCqt0e-8iXEL6hE7RjVlDDwldjH1y5TVE34_J-QHtQfQdViaYpgc08cN6Vzc9uoQxbEK69-E36nxAk6tfs2lJFJpuPbv4pnjVmT7C8S4eFT-_fvkxOSvPr77NJqfnpeVKpTI7tJUARQg3YHiFraBAW6OASylxJ6iUhreMCas4xbihtOpY1QJnRhDSsaNittVtvVnoVXBLE_5ob5zeJHyYaxPyCnvQ1NiuVYJxTBmvay6rqmsaA5SCIKaxWevzVms1NktoLQwpD_pI9HFlcLd67tdaKl4LWmWBDzuB4O9GiEkvXbTQ92YAP0ZNK84xYZSLjL5_gi78GPJ6NxTluJYEZ4ptKRt8jAG6vRmC9b8j0c8cSe5693COfc__k2B_ASfUusc</recordid><startdate>20220321</startdate><enddate>20220321</enddate><creator>Monday, Happy Nkanta</creator><creator>Li, Jianping</creator><creator>Nneji, Grace Ugochi</creator><creator>Hossin, Md Altab</creator><creator>Nahar, Saifun</creator><creator>Jackson, Jehoiada</creator><creator>Chikwendu, Ijeoma Amuche</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7180-0430</orcidid><orcidid>https://orcid.org/0000-0003-2192-1450</orcidid><orcidid>https://orcid.org/0000-0002-7946-0557</orcidid><orcidid>https://orcid.org/0000-0002-2016-7639</orcidid><orcidid>https://orcid.org/0000-0002-4700-9083</orcidid><orcidid>https://orcid.org/0000-0003-0730-2098</orcidid><orcidid>https://orcid.org/0000-0001-9277-2312</orcidid></search><sort><creationdate>20220321</creationdate><title>WMR-DepthwiseNet: A Wavelet Multi-Resolution Depthwise Separable Convolutional Neural Network for COVID-19 Diagnosis</title><author>Monday, Happy Nkanta ; Li, Jianping ; Nneji, Grace Ugochi ; Hossin, Md Altab ; Nahar, Saifun ; Jackson, Jehoiada ; Chikwendu, Ijeoma Amuche</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-831c65e9114aea460c52e2da9e48880f5288a4d335c94200b226f36de43a511f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chest X-ray (CXR)</topic><topic>Computed Tomography (CT)</topic><topic>convolutional neural network</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Datasets</topic><topic>depthwise separable convolution</topic><topic>Medical imaging</topic><topic>multiresolution analysis</topic><topic>Neural networks</topic><topic>wavelet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monday, Happy Nkanta</creatorcontrib><creatorcontrib>Li, Jianping</creatorcontrib><creatorcontrib>Nneji, Grace Ugochi</creatorcontrib><creatorcontrib>Hossin, Md Altab</creatorcontrib><creatorcontrib>Nahar, Saifun</creatorcontrib><creatorcontrib>Jackson, Jehoiada</creatorcontrib><creatorcontrib>Chikwendu, Ijeoma Amuche</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest_Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Diagnostics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monday, Happy Nkanta</au><au>Li, Jianping</au><au>Nneji, Grace Ugochi</au><au>Hossin, Md Altab</au><au>Nahar, Saifun</au><au>Jackson, Jehoiada</au><au>Chikwendu, Ijeoma Amuche</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>WMR-DepthwiseNet: A Wavelet Multi-Resolution Depthwise Separable Convolutional Neural Network for COVID-19 Diagnosis</atitle><jtitle>Diagnostics (Basel)</jtitle><addtitle>Diagnostics (Basel)</addtitle><date>2022-03-21</date><risdate>2022</risdate><volume>12</volume><issue>3</issue><spage>765</spage><pages>765-</pages><issn>2075-4418</issn><eissn>2075-4418</eissn><abstract>Timely discovery of COVID-19 could aid in formulating a suitable treatment plan for disease mitigation and containment decisions. The widely used COVID-19 test necessitates a regular method and has a low sensitivity value. Computed tomography and chest X-ray are also other methods utilized by numerous studies for detecting COVID-19. In this article, we propose a CNN called depthwise separable convolution network with wavelet multiresolution analysis module (WMR-DepthwiseNet) that is robust to automatically learn details from both spatialwise and channelwise for COVID-19 identification with a limited radiograph dataset, which is critical due to the rapid growth of COVID-19. This model utilizes an effective strategy to prevent loss of spatial details, which is a prevalent issue in traditional convolutional neural network, and second, the depthwise separable connectivity framework ensures reusability of feature maps by directly connecting previous layer to all subsequent layers for extracting feature representations from few datasets. We evaluate the proposed model by utilizing a public domain dataset of COVID-19 confirmed case and other pneumonia illness. The proposed method achieves 98.63% accuracy, 98.46% sensitivity, 97.99% specificity, and 98.69% precision on chest X-ray dataset, whereas using the computed tomography dataset, the model achieves 96.83% accuracy, 97.78% sensitivity, 96.22% specificity, and 97.02% precision. According to the results of our experiments, our model achieves up-to-date accuracy with only a few training cases available, which is useful for COVID-19 screening. This latest paradigm is expected to contribute significantly in the battle against COVID-19 and other life-threatening diseases.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35328318</pmid><doi>10.3390/diagnostics12030765</doi><orcidid>https://orcid.org/0000-0002-7180-0430</orcidid><orcidid>https://orcid.org/0000-0003-2192-1450</orcidid><orcidid>https://orcid.org/0000-0002-7946-0557</orcidid><orcidid>https://orcid.org/0000-0002-2016-7639</orcidid><orcidid>https://orcid.org/0000-0002-4700-9083</orcidid><orcidid>https://orcid.org/0000-0003-0730-2098</orcidid><orcidid>https://orcid.org/0000-0001-9277-2312</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-4418 |
ispartof | Diagnostics (Basel), 2022-03, Vol.12 (3), p.765 |
issn | 2075-4418 2075-4418 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2acfd95340234774866fbbae22e51abc |
source | Publicly Available Content Database; PubMed Central; Coronavirus Research Database |
subjects | Chest X-ray (CXR) Computed Tomography (CT) convolutional neural network Coronaviruses COVID-19 Datasets depthwise separable convolution Medical imaging multiresolution analysis Neural networks wavelet |
title | WMR-DepthwiseNet: A Wavelet Multi-Resolution Depthwise Separable Convolutional Neural Network for COVID-19 Diagnosis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A12%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=WMR-DepthwiseNet:%20A%20Wavelet%20Multi-Resolution%20Depthwise%20Separable%20Convolutional%20Neural%20Network%20for%20COVID-19%20Diagnosis&rft.jtitle=Diagnostics%20(Basel)&rft.au=Monday,%20Happy%20Nkanta&rft.date=2022-03-21&rft.volume=12&rft.issue=3&rft.spage=765&rft.pages=765-&rft.issn=2075-4418&rft.eissn=2075-4418&rft_id=info:doi/10.3390/diagnostics12030765&rft_dat=%3Cproquest_doaj_%3E2644013245%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c499t-831c65e9114aea460c52e2da9e48880f5288a4d335c94200b226f36de43a511f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2642407810&rft_id=info:pmid/35328318&rfr_iscdi=true |