Loading…

Vector tetraquark state candidates: Y(4260 / 4220), Y(4360 / 4320), Y(4390) and Y(4660 / 4630)

In this article, we construct the C ⊗ γ μ C and C γ 5 ⊗ γ 5 γ μ C type currents to interpolate the vector tetraquark states, then carry out the operator product expansion up to the vacuum condensates of dimension-10 in a consistent way, and obtain four QCD sum rules. In calculations, we use the form...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. C, Particles and fields Particles and fields, 2018-06, Vol.78 (6), p.1-12, Article 518
Main Author: Wang, Zhi-Gang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c445t-c7918079109b6da9372c6e9c89a62f27aa952a004764f53299b22ad78579a6f83
cites cdi_FETCH-LOGICAL-c445t-c7918079109b6da9372c6e9c89a62f27aa952a004764f53299b22ad78579a6f83
container_end_page 12
container_issue 6
container_start_page 1
container_title The European physical journal. C, Particles and fields
container_volume 78
creator Wang, Zhi-Gang
description In this article, we construct the C ⊗ γ μ C and C γ 5 ⊗ γ 5 γ μ C type currents to interpolate the vector tetraquark states, then carry out the operator product expansion up to the vacuum condensates of dimension-10 in a consistent way, and obtain four QCD sum rules. In calculations, we use the formula μ = M Y 2 - ( 2 M c ) 2 to determine the optimal energy scales of the QCD spectral densities, moreover, we take the experimental values of the masses of the Y (4260 / 4220), Y (4360 / 4320), Y (4390) and Y (4660 / 4630) as input parameters and fit the pole residues to reproduce the correlation functions at the QCD side. The numerical results support assigning the Y (4660 / 4630) to be the C ⊗ γ μ C type vector tetraquark state c c ¯ s s ¯ , assigning the Y (4360 / 4320) to be C γ 5 ⊗ γ 5 γ μ C type vector tetraquark state c c ¯ q q ¯ , and disfavor assigning the Y (4260 / 4220) and Y (4390) to be the pure vector tetraquark states.
doi_str_mv 10.1140/epjc/s10052-018-5996-5
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2add27f0b5f84321b4cb9b20147b2187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2add27f0b5f84321b4cb9b20147b2187</doaj_id><sourcerecordid>2058296364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-c7918079109b6da9372c6e9c89a62f27aa952a004764f53299b22ad78579a6f83</originalsourceid><addsrcrecordid>eNqFkctKAzEYhQdRsFZfQQbcWHDsn0yu7qR4KQhuVHAVMplMmbF22iRd-DZ9lj6ZGcfWpZvk5-R8JwknSc4RXCNEYGyXjRl7BEBxBkhkVEqW0YNkgEhOMhblw_1MyHFy4n0DAJiAGCTlmzWhdWmwwenVWruP1AcdbGr0oqzLOPmb9P2SYAbbzXi7IRjD6KpT8p2S7xUJozRi3cx2pyyH0WlyVOm5t2e_-zB5vb97mTxmT88P08ntU2YIoSEzXCIBcQFZsFLLnGPDrDRCaoYrzLWWFGsAwhmpaI6lLDDWJReUR0cl8mEy7XPLVjdq6epP7b5Uq2v1I7RuprQLtZlbFbkS8woKWon4A1QQU8Q4QIQXGAkesy76rKVrV2vrg2ratVvE5ysMVGDJckaii_Uu41rvna32tyJQXTuqa0f17ajYjuraUTSCvAd9BBYz6_7i_yG_ASDJkJc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2058296364</pqid></control><display><type>article</type><title>Vector tetraquark state candidates: Y(4260 / 4220), Y(4360 / 4320), Y(4390) and Y(4660 / 4630)</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Wang, Zhi-Gang</creator><creatorcontrib>Wang, Zhi-Gang</creatorcontrib><description>In this article, we construct the C ⊗ γ μ C and C γ 5 ⊗ γ 5 γ μ C type currents to interpolate the vector tetraquark states, then carry out the operator product expansion up to the vacuum condensates of dimension-10 in a consistent way, and obtain four QCD sum rules. In calculations, we use the formula μ = M Y 2 - ( 2 M c ) 2 to determine the optimal energy scales of the QCD spectral densities, moreover, we take the experimental values of the masses of the Y (4260 / 4220), Y (4360 / 4320), Y (4390) and Y (4660 / 4630) as input parameters and fit the pole residues to reproduce the correlation functions at the QCD side. The numerical results support assigning the Y (4660 / 4630) to be the C ⊗ γ μ C type vector tetraquark state c c ¯ s s ¯ , assigning the Y (4360 / 4320) to be C γ 5 ⊗ γ 5 γ μ C type vector tetraquark state c c ¯ q q ¯ , and disfavor assigning the Y (4260 / 4220) and Y (4390) to be the pure vector tetraquark states.</description><identifier>ISSN: 1434-6044</identifier><identifier>EISSN: 1434-6052</identifier><identifier>DOI: 10.1140/epjc/s10052-018-5996-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Astronomy ; Astrophysics and Cosmology ; Elementary Particles ; Hadrons ; Heavy Ions ; Measurement Science and Instrumentation ; Nuclear Energy ; Nuclear Physics ; Operators (mathematics) ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Regular Article - Theoretical Physics ; String Theory ; Sum rules</subject><ispartof>The European physical journal. C, Particles and fields, 2018-06, Vol.78 (6), p.1-12, Article 518</ispartof><rights>The Author(s) 2018</rights><rights>The European Physical Journal C is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-c7918079109b6da9372c6e9c89a62f27aa952a004764f53299b22ad78579a6f83</citedby><cites>FETCH-LOGICAL-c445t-c7918079109b6da9372c6e9c89a62f27aa952a004764f53299b22ad78579a6f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2058296364/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2058296364?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Wang, Zhi-Gang</creatorcontrib><title>Vector tetraquark state candidates: Y(4260 / 4220), Y(4360 / 4320), Y(4390) and Y(4660 / 4630)</title><title>The European physical journal. C, Particles and fields</title><addtitle>Eur. Phys. J. C</addtitle><description>In this article, we construct the C ⊗ γ μ C and C γ 5 ⊗ γ 5 γ μ C type currents to interpolate the vector tetraquark states, then carry out the operator product expansion up to the vacuum condensates of dimension-10 in a consistent way, and obtain four QCD sum rules. In calculations, we use the formula μ = M Y 2 - ( 2 M c ) 2 to determine the optimal energy scales of the QCD spectral densities, moreover, we take the experimental values of the masses of the Y (4260 / 4220), Y (4360 / 4320), Y (4390) and Y (4660 / 4630) as input parameters and fit the pole residues to reproduce the correlation functions at the QCD side. The numerical results support assigning the Y (4660 / 4630) to be the C ⊗ γ μ C type vector tetraquark state c c ¯ s s ¯ , assigning the Y (4360 / 4320) to be C γ 5 ⊗ γ 5 γ μ C type vector tetraquark state c c ¯ q q ¯ , and disfavor assigning the Y (4260 / 4220) and Y (4390) to be the pure vector tetraquark states.</description><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Elementary Particles</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Measurement Science and Instrumentation</subject><subject>Nuclear Energy</subject><subject>Nuclear Physics</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Regular Article - Theoretical Physics</subject><subject>String Theory</subject><subject>Sum rules</subject><issn>1434-6044</issn><issn>1434-6052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkctKAzEYhQdRsFZfQQbcWHDsn0yu7qR4KQhuVHAVMplMmbF22iRd-DZ9lj6ZGcfWpZvk5-R8JwknSc4RXCNEYGyXjRl7BEBxBkhkVEqW0YNkgEhOMhblw_1MyHFy4n0DAJiAGCTlmzWhdWmwwenVWruP1AcdbGr0oqzLOPmb9P2SYAbbzXi7IRjD6KpT8p2S7xUJozRi3cx2pyyH0WlyVOm5t2e_-zB5vb97mTxmT88P08ntU2YIoSEzXCIBcQFZsFLLnGPDrDRCaoYrzLWWFGsAwhmpaI6lLDDWJReUR0cl8mEy7XPLVjdq6epP7b5Uq2v1I7RuprQLtZlbFbkS8woKWon4A1QQU8Q4QIQXGAkesy76rKVrV2vrg2ratVvE5ysMVGDJckaii_Uu41rvna32tyJQXTuqa0f17ajYjuraUTSCvAd9BBYz6_7i_yG_ASDJkJc</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Wang, Zhi-Gang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20180601</creationdate><title>Vector tetraquark state candidates: Y(4260 / 4220), Y(4360 / 4320), Y(4390) and Y(4660 / 4630)</title><author>Wang, Zhi-Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-c7918079109b6da9372c6e9c89a62f27aa952a004764f53299b22ad78579a6f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Elementary Particles</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Measurement Science and Instrumentation</topic><topic>Nuclear Energy</topic><topic>Nuclear Physics</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Regular Article - Theoretical Physics</topic><topic>String Theory</topic><topic>Sum rules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhi-Gang</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>The European physical journal. C, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhi-Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vector tetraquark state candidates: Y(4260 / 4220), Y(4360 / 4320), Y(4390) and Y(4660 / 4630)</atitle><jtitle>The European physical journal. C, Particles and fields</jtitle><stitle>Eur. Phys. J. C</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>78</volume><issue>6</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><artnum>518</artnum><issn>1434-6044</issn><eissn>1434-6052</eissn><abstract>In this article, we construct the C ⊗ γ μ C and C γ 5 ⊗ γ 5 γ μ C type currents to interpolate the vector tetraquark states, then carry out the operator product expansion up to the vacuum condensates of dimension-10 in a consistent way, and obtain four QCD sum rules. In calculations, we use the formula μ = M Y 2 - ( 2 M c ) 2 to determine the optimal energy scales of the QCD spectral densities, moreover, we take the experimental values of the masses of the Y (4260 / 4220), Y (4360 / 4320), Y (4390) and Y (4660 / 4630) as input parameters and fit the pole residues to reproduce the correlation functions at the QCD side. The numerical results support assigning the Y (4660 / 4630) to be the C ⊗ γ μ C type vector tetraquark state c c ¯ s s ¯ , assigning the Y (4360 / 4320) to be C γ 5 ⊗ γ 5 γ μ C type vector tetraquark state c c ¯ q q ¯ , and disfavor assigning the Y (4260 / 4220) and Y (4390) to be the pure vector tetraquark states.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjc/s10052-018-5996-5</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1434-6044
ispartof The European physical journal. C, Particles and fields, 2018-06, Vol.78 (6), p.1-12, Article 518
issn 1434-6044
1434-6052
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2add27f0b5f84321b4cb9b20147b2187
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Springer Nature - SpringerLink Journals - Fully Open Access
subjects Astronomy
Astrophysics and Cosmology
Elementary Particles
Hadrons
Heavy Ions
Measurement Science and Instrumentation
Nuclear Energy
Nuclear Physics
Operators (mathematics)
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Regular Article - Theoretical Physics
String Theory
Sum rules
title Vector tetraquark state candidates: Y(4260 / 4220), Y(4360 / 4320), Y(4390) and Y(4660 / 4630)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A48%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vector%20tetraquark%20state%20candidates:%20Y(4260%C2%A0/%C2%A04220),%20Y(4360%C2%A0/%C2%A04320),%20Y(4390)%20and%20Y(4660%C2%A0/%C2%A04630)&rft.jtitle=The%20European%20physical%20journal.%20C,%20Particles%20and%20fields&rft.au=Wang,%20Zhi-Gang&rft.date=2018-06-01&rft.volume=78&rft.issue=6&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.artnum=518&rft.issn=1434-6044&rft.eissn=1434-6052&rft_id=info:doi/10.1140/epjc/s10052-018-5996-5&rft_dat=%3Cproquest_doaj_%3E2058296364%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c445t-c7918079109b6da9372c6e9c89a62f27aa952a004764f53299b22ad78579a6f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2058296364&rft_id=info:pmid/&rfr_iscdi=true