Loading…

Elevation Changes of the Antarctic Ice Sheet from Joint Envisat and CryoSat-2 Radar Altimetry

The elevation changes of ice sheets have been recognized as an essential climate variable. Long-term time series of these changes are an important parameter to understand climate change, and the longest time-series of ice sheet elevation changes can be derived from combining multiple Ku-band satelli...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2020-11, Vol.12 (22), p.3746
Main Authors: Zhang, Baojun, Wang, Zemin, Yang, Quanming, Liu, Jingbin, An, Jiachun, Li, Fei, Liu, Tingting, Geng, Hong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The elevation changes of ice sheets have been recognized as an essential climate variable. Long-term time series of these changes are an important parameter to understand climate change, and the longest time-series of ice sheet elevation changes can be derived from combining multiple Ku-band satellite altimetry missions. However, unresolved intermission biases obscure the record. Here, we revise the mathematical model commonly used in the literature to simultaneously correct for intermission bias and ascending–descending bias to ensure the self-consistency and cohesion of the elevation time series across missions. This updated approach is applied to combine Envisat and CryoSat-2 radar altimetry in the period of 2002–2019. We tested this approach by validating it against airborne and satellite laser altimetry. Combining the detailed temporal and spatial evolution of elevation changes with firn densification-modeled volume changes due to surface processes, we found that the Amundsen Sea sector accounts for most of the total volume loss of the Antarctic Ice Sheet (AIS), mainly from ice dynamics. However, surface processes dominate the volume changes in the key regions, such as the Totten Glacier sector, Dronning Maud Land, Princess Elizabeth Land, and the Bellingshausen Sea sector. Overall, accelerated volume loss in the West Antarctic continues to outpace the gains observed in the East Antarctic. The total volume change during 2002–2019 for the AIS was −68.7 ± 8.1 km3/y, with an acceleration of −5.5 ± 0.9 km3/y2.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs12223746